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1. Introduction  46 

 47 

Accurate short-term high-resolution precipitation forecast has been a challenge 48 

since the last few decades. The computing power has increased allowing the increasing 49 

in model grid resolution, however, the accuracy in predicting the time and position of a 50 

particular convective cell is still reduced, especially in the first forecast hours. One of the 51 

reasons that causes this low skill at the very beginning of the forecast is the well-known 52 

spin-up problem (Illari, 1987). It becomes more relevant when doing short-term weather 53 

forecast (1-6h).  For precipitation prediction up to 3 hours, Lagrangian advection of radar 54 

echoes usually performs better compared to numerical weather prediction (Lin et al., 55 

2005; Sun et al., 2014). Of course, it depends on the rain system type, i.e., less organized 56 

convection has a forecast range much shorter than those well-organized (Zipser, 1990). 57 

In the range between around 3 to 6 hours there is a gap in performance between 58 

extrapolation methods and dynamical numerical models. In order to fill this gap, many 59 

studies have been done to reduce the spin-up of numerical models (Sun et al., 2014), and 60 

the best way to improve the model skill at the very beginning of the precipitation forecast 61 

is to better represent the model initial condition (Stensrud et al., 2013), and it can be 62 

accomplished by performing data assimilation (Sun et al., 2014). Data assimilation (DA) 63 

is a technique for generating accurate image of the true state of the atmosphere at a given 64 

time in which the observed information is accumulated into the model state by taking 65 

advantage of consistency constraints with laws of time evolution and physics properties. 66 

A crucial advantage of NWP models with Data Assimilation (DA) compared to 67 

nowcasting models (extrapolation of radar echoes) is that it not only adds the current data 68 

into the NWP model, but they should also initialize convective-scale events (Sokol, 69 
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2010). A logical approach used for nowcasting is to blend radar echo extrapolation with 70 

a numerical model to generate a seamless 0-6h forecast (Sun et al., 2014). However, 71 

extrapolation skill is strongly reduced with time and the blended forecast after 3-4h will 72 

rely on the numerical models.  73 

  74 

Initial condition plays a crucial role in numerical weather prediction (NWP) and 75 

for high resolution forecasts the model needs to be initialized not only using observation 76 

that describe the large-scale features, but also the convective scale. Understanding how 77 

to assimilate observations at the convective scale, resolving the dynamical process 78 

relevant for predicting convection and dealing with rapid error growth is a huge challenge. 79 

Doppler Radar observations have been used in complex DA systems in order to improve 80 

the initial condition of high-resolution models, since they are almost the only source of 81 

three-dimensional data in this scale (Aksoy et al., 2009). Reflectivity and radial velocities 82 

from doppler radars have been successfully used in complex DA in order to improve the 83 

initial condition for convection-permitting models (e.g., Gao et al., 2004; Sun et al., 2005; 84 

Xiao et al., 2007; Ming at al., 2009; Wang et al., 2013; Vendrasco et al., 2016; Tong et 85 

al., 2016; Kong et al., 2018). More recently, polarimetric variables have also been used 86 

in DA systems (eg., Carlin et al., 2017; Li et al., 2017; Kawabata et al., 2018; 87 

Wolfensberger and Berne, 2018). Although, many studies have shown improvements on 88 

the precipitations forecasts due to radar DA, it still a challenge to extract as much 89 

information as possible from observations while maintaining the large-scale balance 90 

found in the background. Vendrasco et al. (2016) have shown that constraining the cost 91 

function with a large-scale analysis can alleviate this problem. Also, Tong et al. (2016) 92 

have studied the best cycle strategy to assimilate radar data and they found that 93 
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performing 3 1-h cycle before the analysis time gave them the best results compared to 94 

3-h cycle.  95 

Another important aspect that directly impacts the precipitation in high 96 

resolution forecasts is the microphysical parameterization. Many approaches are 97 

considered to parametrize the in-cloud process and they can be categorized in two 98 

schemes: bulk and bin parameterizations. Bin schemes aims to calculate microphysics as 99 

accurately and generally as possible. It divides microphysical particles in bins for 100 

different sizes and compute the evolution of each bin separately. Thus, the particle size 101 

distribution (PSD) is an output, instead of an input like occurs in bulk schemes. Although 102 

it is much more general and precise, it is very expensive computationally and it is not 103 

feasibly in operational NWP models. Bulk schemes can be classified by the number of 104 

moments (predicted variables) that is included in the parametrization. The most common 105 

bulk parameterizations are those with single moments (e.g, Ferrier ï Ferrier et al. 2002; 106 

WSM6 - Hong and Lim 2006; Thompson - Thompson et al. 2008) that predict only the 107 

mass of the particles, and the double moment bulk schemes that predict also the number 108 

of concentration (e.g., WDM6 ï Lim and Hong 2010; Morrinson ï Morrinson et al. 2009). 109 

It is not common in operational NWP models, but there are also developments in bulk 110 

schemes with the third moment, which provides the prediction of reflectivity as well (e.g., 111 

Milbrandt and Yau, 2005). Many works have shown the impact of microphysical 112 

parameterization on high resolution precipitation forecast (Wu et al, 2013), however, just 113 

a few have discussed their impact while doing radar DA. Although all the bulk 114 

microphysics parameterizations solve similar process, the production of rain and its 115 

timing can also be distinct. The question that raises is: does the radar DA produce any 116 

impact on this behavior?  117 
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The goal of this paper is to evaluate the performance of cloud resolving model 118 

for nowcasting application of intense thunderstorms and provides some evaluations 119 

regarding the impact of different radar DA procedures and microphysics 120 

parameterization.  121 

This paper is organized as follows: Section 2 presents the SOS-CHUVA project, 122 

the radar data used in this work and outlines the experimental setup. Also, it briefly 123 

describes the WRF 3DVAR DA system employed in this study and the methods for 124 

precipitation verification. In Section 3 is presented the evaluation of DA procedure (i.e., 125 

the increments and residuals) and the short-range precipitation forecast for 5 convective 126 

cases to show how the radar DA and the different microphysics impacts the precipitation 127 

forecast in the first 6 hours of leading time. The main results obtained from this study are 128 

summed up in Section 4. 129 

 130 

2. Data and Methodology 131 

 132 

2.1. The SOS-CHUVA campaign 133 

 134 

The SOS-CHUVA campaign occurred in south-eastern Brazil between 2016 and 135 

2018. The campaign was a collaborative effort of several Brazilian institutions to better 136 

understand severe thunderstorms in the region and improve nowcasting tools and 137 

methodologies. SOS-CHUVA is an extension of the CHUVA project (Machado et al., 138 

2014) specially dedicated to nowcasting. During the experiment, several instruments were 139 

installed and operated during two years (2016-2018) in Campinas, São Paulo State (Fig. 140 

1), in special an X-band polarimetric radar and two others operational S band radars.  141 
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 142 

FIGURA 1 143 

 144 

2.2. Selection of the cases 145 

 146 

Five cases of intense/severe storms were selected among all the cases occurred 147 

during the SOS-CHUVA campaign (Fig. 2). The 5 cases were chosen based on their 148 

intensity and the availability of data, particularly the radar data. Also, there was an attempt 149 

to include cases of convective systems with different morphologies, from organized 150 

mesoscale convective systems, such as quali-linear convective systems (QLCS) and 151 

storm clusters, to isolated storms. For all cases, severe/intense weather was reported, 152 

including hail, strong winds and/or flooding, see Fig. 2. A synthesis of these cases, as 153 

well as the radar data used in the data assimilation system, is shown in Table 1. A more 154 

detailed discussion of the events and the synoptic-scale environment is shown in Sec. 3.1. 155 

 156 

FIGURA 2 157 

 158 

2.3. Radars data 159 

 160 

The three radars employed in this study were located in: São Roque (23.602°S, 161 

47.094°W, 1147 m altitude; SR), Salesópolis (23.600°S, 45.972°W, 916 m altitude; SL) 162 

and Campinas (22.813°S, 47.056°W, 680 m altitude; CP), see Fig. 1 and Table 2 for a 163 

detailed description of all radars. The volumetric data is available each 5 minutes for the 164 

CP radar and 10 and 15 minutes for the SR and SL radars, respectively. In this study, only 165 
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volumetric data every 60 minutes were used in the DA cycling process. Data every 30 166 

minutes were used for the forecast evaluation. 167 

 168 

2.4. WRF and WRFDA 169 

 170 

The model used in the study was the Weather Research and Forecasting model 171 

(WRF-ARW - Skamarock, 2008), version 3.9.1.1, and its 3DVAR data assimilation 172 

system (WRFDA-3DVAR), version 3.9.1 (Baker et al., 2004). It iteratively minimizes 173 

the cost function defined by: 174 

ὐ ὐ  ὐ  
ρ

ς
ἾἾ  

ρ

ς
Ἤ  ἒἣἾἠ Ἤ  ἒἣἾ (1) 

where ὐ and ὐ stand for the background (i.e., the previous model forecast) and 175 

observation terms, respectively. The term Ἶ is the control variable (CV) defined by Ἶ176 

 ἣ ὀ ὀ , where ἣ is the decomposition of the background error covariance Ἄ via 177 

Ἄ ἣἣἢ; ὀ is the full analysis variable; and ὀ is the background variable. The 178 

innovation vectors that measures the departure of the observation ὁ from its counterpart 179 

computed from the background ὀ is given by Ἤ  ὁ ἒὀ . Here, ἒ is the 180 

linearization of the nonlinear observation operator ἒ, and ἠ is the observation error 181 

covariance matrix. 182 

 Following Sun et al. (2016), the CV used in this study are velocity 183 

components u and v, temperature T, surface pressure Ps, and pseudo-relative humidity 184 

(RHs, where the humidity is divided by its background). For reflectivity data assimilation, 185 

the retrieved rainwater mixing ratio was used as CV, following Wang et al. (2013), in 186 

order to avoid the nonlinearities issues caused by the linearization of the observation 187 
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operator, required by the incremental formulation (Courtier et al., 1994). 188 

 189 

2.5. Model configuration 190 

 191 

The Global Forecast System (GFS) forecasts, from the National Centers for 192 

Environmental Prediction (NCEP) were used as initial and boundary conditions (IC/BC) 193 

for the outermost WRF domain (d01). The GFS is a T1534 global model with 64 vertical 194 

levels. The model output is interpolated to a 0.25° resolution grid, which is used in this 195 

study. Both the IC/BC and the synoptic scale analysis of each case used the 1200 UTC 196 

GFS runs. 197 

Four microphysics schemes were employed: Thompson, Morrison, WDM6 198 

(WRF Double-Moment 6-Class) and WSM6 (WRF Single-Moment 6-Class). The four 199 

microphysics schemes combined with four DA methodologies, including no DA, resulted 200 

in sixteen runs for each case. See Table 3 for the description of the different running 201 

configuration. These runs were used to verify which one is the best combination of 202 

microphysics scheme and assimilation methodology, and also to evaluate the sensitivity 203 

of each factor separately (Sec. 3.2).  204 

 The cycling methodology is described in Fig. 3. For all 5 cases four 205 

continuously cycled analyses were performed at 1500, 1600, 1700 and 1800 UTC and 206 

then a 6-h forecast ensued. For the experiments labelled as nCYnDA and nCYyDA the 207 

cycling was not performed, instead the one-time DA at 1800 UTC was run and then a 6-208 

h forecast took place. 209 

 210 

FIGURE 3 211 
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 212 

2.6. Statistical verification 213 

 214 

Several statistical indices were calculated using the composite reflectivity field 215 

generated by the simulations and the composite reflectivity field observed by the radars. 216 

The contingency table (Table 3) is used to evaluate the simulation reflectivity field in 217 

respect to its observed counterpart. The total numbers of hits, misses, false alarms and 218 

correct negatives in the domain are used to calculate the false alarm ratio (FAR; Eq. 1), 219 

the probability of detection (POD; Eq. 2) and the critical success index (CSI; Eq. 3). 220 

 221 

ὊὃὙ
ὪὥὰίὩὥὰὥὶάί

ὪὥὰίὩὥὰὥὶάίὬὭὸί
 (1) 

ὖὕὈ
ὬὭὸί

ὬὭὸίάὭίίὩί
 (2) 

ὅὛὍ
ὬὭὸί

ὬὭὸίάὭίίὩίὪὥὰίὩὥὰὥὶάί
 (3) 

 222 

The other indices used to evaluate the simulations are the root-mean square error 223 

(RMSE; Eq. 4) and the fractional skill score (FSS; Eq. 5; Roberts and Lean, 2008). The 224 

FSS is calculated using the reflectivity thresholds of 30, 40 and 50 dBZ and radii of 1, 2 225 

and 3 km. 226 

 227 

ὙὓὛὉ
ρ

ὔ
Ὂȅ ὕȅό (4) 

 228 
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where F and O stands for the forecast and observed reflectivity field, respectively, the k 229 

subscript represents the kth grid point and N the total number of grid points. 230 

 231 

ὊὛὛρ
ὊὄὛ

ὊὄὛ

ρ

ρ
ὔ
В ὖ ὖ

ρ
ὔ
В ὖό ὖό

 

(5) 

 232 

where the PF(k) and PO(k) are the fractional coverages of reflectivity in the kth grid point 233 

that exceeds a given threshold and N is the total number if grid points in the domain.  234 

 235 

3. Results 236 

 237 

3.1.Cases description and synoptic environment 238 

 239 

Figure 2 shows the composite radar reflectivity of the 5 cases used in this study. 240 

The time shown in Fig. 2 are approximately when severe weather was reported at surface, 241 

as indicated in the figure. The cases vary from mature quasi-linear convective systems 242 

(QLCS) (Figs. 2a,d) to isolated thunderstorms storms (Fig. 2b). This is an important 243 

characteristic of the cases selected because the results of this research are valid for intense 244 

events with different types of convective organization. The December 3rd case (Fig. 2a) 245 

is characterized by a large number of storms over the domain 3, including a QLCS in the 246 

northern part of the area that was attributed to several reports of severe winds in Campinas 247 

region. Isolated storms formed over the São Paulo metropolitan region in the afternoon 248 
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of February 22nd (Fig. 2b) and caused hail and flash flooding in the area. On March 6th 249 

(Fig. 2c), a large area of precipitation covered most of the study region, with embedded 250 

severe storms in the northern sector causing hail and winds. The second QLCS among 251 

the studied cases occurred on May 5th (Fig. 2d), and was responsible for multiple severe 252 

wind reports and flooding. Finally, the October 27th (Fig. 2e) severe storms formed north 253 

of Campinas, presented Doppler velocity couplets indicating rotation during several radar 254 

scans (not shown), and were responsible for strong winds and hail. 255 

The synoptic-scale 500-hPa configuration (Vorticity and winds at 500 hPa) at 256 

1800 UTC for each case is shown in Fig. 4. At 1800 UTC of December 3rd (Fig. 4a), a 257 

cyclonic vorticity maximum was located upstream of the study region and caused lifting 258 

due to cyclonic vorticity advection (not shown). This trough was associated with colder 259 

air at 500 hPa (temperatures below ï6°C), which increased the instability with time. The 260 

relatively strong 500-hPa flow (15ï20 m sï1) contributed to high wind shear and 261 

convective organization (Fig. 2a). Weak midlevel flow predominated in the study region 262 

during the isolated storms on February 22nd (Fig. 4b). The absence of a source of synoptic-263 

scale lifting suggests these storms formed due to radiative surface heating and the 264 

increasing of thermodynamic instability during the afternoon. The case of March 6th (Fig. 265 

4c) also occurred under weak midlevel flow, which contributed to the slow storm 266 

movement and the occurrence of flooding. Similar to the December 3rd case, on May 5th 267 

(Fig. 4d) a synoptic-scale trough upstream of the study region caused ascent and midlevel 268 

cold advection, and also contributed to intensify the wind shear and organize the QLCS. 269 

The storms occurred on October 27th formed downstream of a midlevel vorticity 270 

maximum embedded in strong zonal flow (Fig. 4e).  271 

 272 
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3.2. Results of DA: Increments and OMB/OMA profiles 273 

 274 

This section shows the impact of radar DA on the analysis (i.e., the output from 275 

the DA system). Thus, only experiments with DA are considered, i.e. nCYyDA and 276 

yCYyDA. The first question addressed is regarding to the DA behavior for each 277 

microphysics. 278 

Figure 5 shows the averaged vertical profiles of observation, innovation 279 

(observation minus background) and residual (observation minus analysis) for radial 280 

velocity and rainwater, snow and graupel mixing ratios. The first important result is that 281 

the residual is always close to zero on the entire profile. It means that the DA is capable 282 

of vanishing almost all the innovation and, thus, bringing the background closer to the 283 

observation. Another interesting finding is that while almost no difference is observed 284 

among microphysics in the radial velocity profile, and just a small difference in the 285 

rainwater mixing ratio, the snow and graupel profiles have shown the greatest differences. 286 

Figure 5 shows clearly that after 4 cycles, the Thompson microphysics parameterization 287 

produces much more snow then the others, on the other hand, Morrison microphysics 288 

produces much more graupel than observation, followed by WSM6 e WDM6. Although 289 

Thompson also overestimates graupel, it is much closer to observations than the other 290 

microphysics. Regarding rainwater, except for WDM6, the profiles are similar, showing 291 

small overestimation below 3 km and underestimation above that level. WDM6 292 

overestimates the entire profile. Itôs important to point out that the microphysics 293 

observations come from the estimation using the relationships from Gao and Stensrud 294 

(2012) that is employed in the WRFDA. 295 

From the DA point of view, the overestimation of snow and graupel by Thompson and 296 
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Morrison microphysics parameterizations, respectively, triggers a balance problem. The 297 

greatest is the innovation, the greatest should be the analysis imbalance caused by the 298 

3DVAR DA. The results showed in Fig. 5 for the residual is quite good, however, it 299 

should be taken into account that the average considers only where radar data are 300 

available, which means that where radars are not available the residuals keep large and it 301 

will affect the forecast started from that analysis. Also, because of this heterogeneous 302 

reduction of the residuals, the balance of the analysis is affected. 303 

Figure 6 shows an example for case of December 3rd, 2016, of the innovations, 304 

increments and residuals of snow and graupel for each microphysics. It clearly shows 305 

overestimation of graupel and snow for Morrison and Thompson microphysics, also 306 

shows that the residuals is very small, which implies that the DA process was able to 307 

reduce the innovation. Figure 6 also shows large area without radar data, where DA could 308 

not correct the mentioned overestimation. Therefore, although the ability of DA to correct 309 

the microphysics concentrations clearly does not depend on the microphysics, the 310 

importance of choosing a proper parametrization is still an important step to get an 311 

accurate forecast.  312 

 313 

3.3. Sensitivity to microphysics parameterization 314 

 315 

In this section, the four microphysics schemes are evaluated for the five cases. 316 

Figure 7 shows the RMSE and FSS (for the 30-dBZ threshold) of the average 317 

among all the five cases and all the four DA methods for each microphysics 318 

parameterization employed. The RMSE (Fig. 7a) in general decreases from 30 to 90 319 

minutes of forecast, and then increases again. Simulations using the Thompson 320 
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microphysics present the lowest RMSE in all forecast times, followed by the simulations 321 

using the Morrison scheme. The FSS (Fig. 7b), on the other hand, is lower in Thompson 322 

simulations, but the difference is small between all the microphysics schemes. In terms 323 

of the reflectivity pattern, simulations with Thompson have a better depiction of the 324 

convective and stratiform areas, while the other microphysics tend to overestimate the 325 

reflectivity values, as it will be shown latter. For this reason, in this study we will use the 326 

Thompson microphysics as a reference in the analysis of the different DA methods. 327 

 328 

3.4.Sensitivity to radar DA method 329 

 330 

This section presents the statistical verifications for the different DA methods. 331 

Firstly, two cases with relatively good and regular model performance are described. The 332 

model errors in representing convective and stratiform areas and how can the radar DA 333 

improve this can be accessed through the analysis of the reflectivity fields. 334 

Figure 8 shows the observed and simulated composite reflectivity for the March 335 

3rd case. The yCYyDA 1-h forecast (Fig. 8d) was able to reproduce the most intense storm 336 

in the area over the northwestern part of the domain (Fig. 8a), even though the location is 337 

shifted to North, compared to observation. In the southern part of the domain (around the 338 

24°S latitude), the west-east band of precipitation observed at 2100 UTC (Fig. 8c) is 339 

formed in the simulation 2 h earlier (Fig. 8d), and by 2100 UTC (Fig. 8f) it has dissipated 340 

in the model. By comparing the yCYyAD simulation (Fig. 8d,e,f) with the nCYyAD 341 

simulation (Fig. 8g,h,i), the DA cycle causes a better representation of the severe 342 

thunderstorms in the northwestern part of the domain with 1 hour of forecast. The 343 

precipitation band that remains after the severe storms dissipate at 2000 and 2100 UTC 344 
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(2- and 3-h forecasts, respectively) is broader in the yCYyDA simulation (Fig. 8d,e,f), 345 

which better agrees with the observation. Other noteworthy characteristic is the larger 346 

area with precipitation over the domain in the yCYyDA simulation when compared to all 347 

the other simulations (Fig. 8gïo), which is observed in all simulated cases (not shown).  348 

The simulations without radar DA (yCYnDA and nCYnDA) show a lower 349 

precipitation coverage over the domain (Figs. 8jïo) when compared to the simulations 350 

with radar DA (Figs. 8dïi). The yCYnAD (Figs. 8jïl) simulation presents a better 351 

representation of the severe storms north of 19°S relative to the nCYnAD (Figs. 8mïo) 352 

simulation in all forecast hours, and is similar to the yCYyAD (Figs. 8dïf) simulation in 353 

this aspect. The model run with a previous precipitation in the model, which is generated 354 

by the cycle, does a better job in simulating the severe storms in the area. The simulation 355 

without DA and without cycle presents a much lower precipitation coverage than 356 

observed, mainly in the first hour of forecast (Fig. 8m). It is explained by the spin-up 357 

problem that take time to balance the model and initiate convection. 358 

Figure 9 shows the radar reflectivity factor and 2-h simulated reflectivity 359 

forecasts valid for 2000 UTC 22 February 2017, when an isolated storm produced small 360 

hail and flooding in the city of São Paulo. Similar to what occurred to the other cases 361 

(Fig. 8aïf), the yCYyDA simulation (Fig. 9b) forecasts precipitation over a larger area 362 

compared to observation (Fig. 9a). The overestimated precipitation area is possibly 363 

related to the character of precipitation: as the radar indicates several storms over the 364 

region and the thermodynamic environment is considerably unstable (CAPE > 2000 J kgï365 

1, not shown), the cycle and DA causes convective overturn throughout the domain. It is 366 

also possible that non-meteorological radar echoes (e.g., areas with reflectivity factor 367 

lower than 20 dBZ between 23°S and 24°S, 47°W and 48°W) are being interpreted by the 368 
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model as areas of active convection. Despite the widespread precipitation area in 369 

yCYyDA simulation, the area of severe convection over the São Paulo metropolitan area 370 

is relatively well indicated by the model. 371 

The yCYnDA simulation (Fig. 9d) produces the best results in this case because 372 

it is able to forecast the severe thunderstorm very close to the observed storm (Fig. 9a) 373 

and does not produce precipitation over a wide area as the yCYyDA (Fig. 9b), which 374 

suggests the DA is the reason for the overestimated precipitation in yCYyDA simulation. 375 

Both simulations without cycle, nCYyDA (Fig. 9e) and nCYnDA (Fig. 9f), fail to forecast 376 

the severe storm with 2 hours of simulation and in future times (not shown). These results 377 

suggest that the cycle is important in place the storms correctly. 378 

Given the inability of the yCYyAD simulation for the February 22nd case in 379 

forecasting the discrete convective mode that was observed, a test was performed in 380 

which the radius of influence of the observations (radar reflectivity field) is decreased. 381 

Fig. 9c shows the results of this simulation. There is no evident improvement in the 382 

forecasted reflectivity field for this case. The characteristic of the convection remains 383 

more widespread than observed (Fig. 9a). 384 

The temporal evolution of the average statistical indices, for all five cases, is 385 

shown in Fig. 10.  These indices are averages of the simulations of all cases and all 386 

microphysics schemes for each DA method. The RMSE (Fig. 10a) is lower in the 387 

yCYyAD simulations for the entire period, except in the 1-h forecast, when it is lower 388 

than the nCYyAD RMSE. Both simulations with radar DA have lower RMSE than 389 

simulations without radar DA. Also, the RMSE increases with time in the simulations 390 

with radar DA, but is less variable in simulations without radar DA. The CSI (Fig. 10b) 391 

shows similar results, with higher CSI in simulations that use radar DA. For most DA 392 
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methods, the CSI increases with time, which is unexpected since the forecast skill tends 393 

to decrease with time. However, most of the cases had greater thunderstorms coverage in 394 

the area in the first hours of forecast (most severe weather reports occurred between 18 395 

and 19 UTC), so the CSI tends to increase when the stratiform precipitation dominates 396 

the convective precipitation or the precipitation leaves the domain. 397 

Both POD (Fig. 10c) and FAR (Fig. 10d) agree with the general characteristic 398 

of yCYyDA to overestimate the precipitation area. The POD is much higher in the 399 

yCYyDA simulations, and the lowest POD occurs in simulations without cycle and 400 

without DA (nCYnDA). The FAR, on the other hand, is very similar in all DA methods. 401 

The combination of these two indices is better (higher POD and lower FAR) in the 402 

yCYyDA, which evidence the ability of the radar DA to better localize the storms in the 403 

simulation according to what the radar is observing in the analysis time.  404 

 405 

 406 

 407 

4. Conclusions 408 

 409 
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List of tables 540 

 541 

Table 1: Characteristics and data availability for each studied case. 542 

Dates 

Approximate time of 

severe weather reports 

Convective mode Available radar data 

03 December 2016 1900 UTC QLCS SR, SL and CP 

22 February 2017 1930 UTC Isolated storm SR, SL and CP 

06 March 2017 1900 UTC Storm cluster SR and SL 

05 May 2017 2100 UTC QLCS SR, SL and CP 

27 October 2017 1900 UTC Storm cluster SR and CP 

 543 

Table 2: Radars characteristics. 544 

- São Roque (SR) Salesópolis (SL) Campinas (CP) 

Wavelength 10.9 cm (S-band) 10.638 cm (S-band) 3.202 cm (X-band) 

Beamwidth 2.0° 0.968° 1.3° 

Polarimetric  No Yes Yes 

Doppler Yes Yes Yes 

Elevations 15 8 17 

Radial resolution 500 m 250 m 200 m 

Azimuthal resolution 1° 1° 1° 

 545 
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Table 3: Experiments 546 

Experiment Microphysics With cycle With DA 

nCYnDA Morrison/Thompson/WSM6/WDM6 No No 

nCYyDA Morrison/Thompson/WSM6/WDM6 No Yes 

yCYnDA Morrison/Thompson/WSM6/WDM6 Yes No 

yCYyDA Morrison/Thompson/WSM6/WDM6 Yes Yes 

 547 

Table 4: Contingency table. 548 

 

Observed 

Yes No 

Forecast 

Yes Hits False alarms 

No Misses Correct negatives 

 549 

 550 

 551 

  552 
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List of figure captions: 553 

FIG. 1: Map showing the location of the radars used in this study and the WRF 554 

domains. (a) Topography (m) from the d01 domain is shaded, and the WRF domains (d01, 555 

d02 and d03) are shown along with the radars location (colored dots) and coverage 556 

(colored circles). (b) Topography (m) from the d03 WRF domain is shaded, SR is the 557 

non-polarimetric S-band radar located in São Roque (red dot and circle with 250 km 558 

radius), SL is the polarimetric S-band radar of Salesópolis (orange dot and circle with 250 559 

km radius), and CP represents the X-band polarimetric radar in Campinas (yellow dot and 560 

circle with 100 km radius). 561 

FIG. 2: Composite reflectivity (dBZ) at (a) 1900 UTC 03 December 2016, (b) 562 

1930 UTC 22 February 2017, (c) 1900 UTC 06 March 2017, (d) 2100 UTC 05 May 2017, 563 

and (e) 1900 UTC 27 October 2017. The reflectivity fields are generated by interpolating 564 

the reflectivity from the closest radar to the WRF d03 domain (Fig. 1). The arrows 565 

indicate the systems that caused severe weather, which occurred approximately in the 566 

times shown in the figures.   567 

 FIG. 3: Schematic diagram of the cycling strategy.  568 

FIG. 4: GFS analysis of 500-hPa relative vertical vorticity (10ï5 sï1, shaded), 569 

geopotential height (dam, black contours every 3 dam), temperature (°C, grey dashed 570 

contours every 2°C), and winds (m sï1, pennant is 25 m sï1, full barb is 5 m sï1, and half 571 

barb is 2.5 m sï1) at 1800 UTC of (a) 03 December 2016, (b) 22 February 2017, (c) 06 572 

March 2017, (d) 05 May 2017, (e) 27 October 2017. The d03 domain is shown in orange.  573 

FIG. 5: Averaged vertical profiles of observation (OBS), innovation (OMB - 574 

observation minus background) and residual (OMA - observation minus analysis). The 575 
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average is performed over the entire grid where radar data are available and for all 5 cases. 576 

FIG. 6: Increments (left), innovations (middle) and residuals (right) of snow (a) 577 

and graupel (b) at 10 km for the case of December 3rd, 2016. From the top are show the 578 

results for Morrinson, Thompson, WSM6 and WDM6. 579 

FIG. 7: Temporal evolution of (a) RMSE and (b) FSS (using the 30-dBZ 580 

composite reflectivity as threshold) from 30 minutes forecasts (1830 UTC) to 3 hours 581 

forecasts (2100 UTC). Both RMSE and FSS are averages of all the five cases and the four 582 

assimilation methods. 583 

FIG. 8: (a) Observed composite reflectivity at 2000 UTC 22 February 2017. 584 

Simulated composite reflectivity in domain d03 (1 km horizontal resolution) at 2000 UTC 585 

(2-h forecasts) 22 February 2017 of WRF runs (b) yCYyDA, Thompson, (c) yCYyDA, 586 

Thompson with reduced radius of influence of radar data (more details in the text), (d) 587 

yCYnDA, Thompson, (e) nCYyDA, Thompson, (f) nCYnDA, Thompson.  588 

FIG. 9: (a,b,c) Observed composite reflectivity at 1900, 2000 and 2100 UTC 3 589 

March 2017. Simulated composite reflectivity in domain d03 (1 km horizontal resolution) 590 

at 1900, 2000 and 2100 (1-, 2- and 3-h forecasts, respectively) 3 March 2017 of WRF 591 

runs (d,e,f) yCYyDA, (g,h,i) nCYyDA, (j,k,l) yCYnDA and (m,n,o) nCYnDA and 592 

Thompson microphysics scheme. 593 

FIG. 10: (a) Average RMSE, (b) CSI, (c) POD and (d) FAR of all the 5 cases 594 

and simulations using all the four microphysics schemes for each DA method according 595 

to the line colors. Only values from 1830 UTC (30-minutes forecasts) to 2100 UTC (3-h 596 

forecasts) are shown. 597 

  598 
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