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1. Introduction

Accurate shorterm highresolution precipitation forecast has been a challenge
since the last few decades. The computing power has increased allowing the increasing
in model grid resolution, however, the accuracy in predicting the time and position of a
particular convective cell is stiteducedespecially in the first forecast hours. One of the
reasonghat causes this low skill at the very beginning of the forecast is thexmaiin
spinup problem [lari, 1987). It becomes more relevant when doingrstterm weather
forecast (36h). For precipitation prediction up to 3 hours, Lagrangian advection of radar
echoes usually performs better compared to numerical weather predlatioet al.,

2005 Sun et al., 20140f coursejt dependonthe rain syem typej.e.,less organized
convection has a forecast range much shohngem those welbrganizedZipser, 190).

In the range between around 3 to 6 hotlmsre is a gap in performance between
extrapolation methods and dynamical numerical models. In order to fill this gap, many
studies have been done to reduce the-gpinf numericamodels Sun et al 2014), and

the best way to improve the model skiltla very beginning of the precipitation forecast

is to better represent the model init@indition Stensrud et gl 2013, and it can be
accomplished by performing daaasimilation(Sun et al., 2014 Data assimilatioDA)

is a technique for generating accurate image of the true state of the atmosphere at a given
time in which the observed information is accumulated into the model state by taking
advantage of consistency constraints with laws of time evolution anccplpysiperties.

A crucial advantage of NWP models wilbata Assimilation DA) compared to
nowcasting models (extrapolation of radar echoes) is that it not only adds the current data

into the NWP model, but they should also initialize conveesivae events(Sokol,
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2010). Alogical approach used for nowcasting is to blend radar echo extrapolation with
a numerical model to generate a seamleés @orecastSun et al., 204). However,
extrapolation skill is strongly reduced with time ahd blended forecastfter 34h will

rely on the numerical models.

Initial condition plays a crucial role in numerical weather prediction (NWP) and
for high resolution forecasts the model needs to be initialized not only using observation
that describe thiargescalefeatures but also the convective scale. Understandiiogy
to assimilate observations at the convective scale, resolving the dynamical process
relevant for predicting convection and dealing with rapid error growth is a huge challenge.
Doppler Radar observations have been used in complex DA systems in oncigrotee
the initial condition othigh-resolutionmodels, since they are almost the only source of
threedimensional data in thcale (Aksoy et al., 2009). Reflectiviipd radial velocities
from doppler radars have been successfully used in complex DAlér to improve the
initial condition for convectiofpermitting models (e.gGao et al., 2004; Sun et al., 2005;
Xiao et al., 2007; Ming at al., 2009; Wang et al., 2013; Vendrasco et al., 2016¢fTong
al., 2016; Kong et al., 2018). Morecently, polametric variabls have also been used
in DA systems (eg Carlin et al.,, 2017; Li et al., 2017; Kawabata et al., 2018;
Wolfensberger and Berne, 2018)though, many studies have shown improvements on
the precipitations forecasts due to radar DA, it stilthallenge to extract as much
information as possible from observations while maintaining the -cgle balance
found in the background/endrasco et al. (2016) have shown that constraining the cost
function with a largescale analysis can alleviatagiproblem. Also, Tong et al. (26)1L

have studied the best cycle strategy to assimilate radar data and they found that
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performing 3 1h cycle before the analysis time gave them the best results compared to
3-h cycle.

Another important aspect that directly impacts the precipitation in high
resolution forecasts is the microphysical parameterization. Many approaches are
consdered to parametrize the-ahboud process and they can be categorized in two
schemes: bulk and bin parameterizations. Bin schemes aims to calculate microphysics as
accurately and generally as possible. It divides microphysical particles in bins for
different sizes and compute the evolution of each bin separately. Thus, the patrticle size
distribution (PSD) is an output, instead of an input like occurs in bulk schemes. Although
it is much more general and precise, it is very expensive computationally iantbit
feasibly in operational NWP models. Bulk schemes can be classified by the number of
moments (predicted variables) that is included in the parametrization. The most common
bulk parameterizations are those with singlements (e.g, Ferriér Ferrier ¢ al. 2002
WSM6 - Hong and Lim 2006Thompson Thompson et al. 200&hat predict only the
mass of the particles, and the double moment bulk schigvaiggedict also the number
of concentratiorfe.g., WDM6I Lim and Hong 2010Morrinsoni Morrinson et & 2009.

It is not common in operational NWP models, but there are also developments in bulk
schemes with the third moment, which provides the prediction of reflectivitglaée.g.,
Milbrandt and Yau, 2005). My works have shown the impact of micropival
parameterization on high resolution precipitatiorecast {Vu et al, 2013 however, just

a few have discussed their impact while doing radar DA. Although all the bulk
microphysics parameterizations solve similar process, the production of raitsand
timing can also be distinct. The question that raises is: does the radar DA produce any

impact on this behavior?
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The goal of this paper is to evaluate the performance of cloud resolving model
for nowcasting application of intense thunderstorms andigee someevaluations
regarding the impact ofdifferent radar DA procedures and microphysics
parameterization.

This paper is organized as follows: Sect@épresents the SOSGHUVA project,
the radar data used in this work and outlines the experimental sdsap.it briefly
describes the WRF 3DVAR DA system employed in this study and the methods for
precipitation verificationln Section3 is presented the evaluation@A procedue (i.e.,
the increments and residuals) and gshertrange precipitation forecast for 5 convective
cases to show how the radar DA and the different microphysics impacts the precipitation
forecast in the first 6 hours of leading time. The main resultsnaatdrom this study are

summed up in Sectich

2. Data and Methodology

2.1. The SOSCHUVA campaign

The SOSCHUVA campaign occurred southeasterrBrazil between 2016 and
2018. The campaign was a lediorative effort of sever@razilianinstitutionsto better
understand severe thunderstorms in the region and improve nowcasting tools and
methodologiesSOSCHUVA is an extension of the CHUVA project (Machado et al.,
2014) specially dedicated to nowcastiBgring the experiment, several ingnents were
installed and operated during two years (22088)in Campinas, Sao Pautitate (Fig.

1), in special an Yand polarimetric radand two others operational S band radars.
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FIGURA 1

2.2. Selection of the cases

Five cases oihtense/severstormswere selected among all the casesurred
during the SOSCHUVA campaign (Fig. 2). Th& cases werehosen based othmeir
intensity and the availability of dataarticularlytheradar data. Also, there was an attempt
to include case®f convective systems with different morphologies, from organized
mesoscale convective systenssich as qualinear convective systems (QLCS) and
storm clustersto isolated stormsFor dl cases severéntenseweatherwas repored,
including hail, strong winds and/or floodingeeFig. 2. A synthesis ofhesecases, as
well as the radar data used in theta assimilation systers shown in Table 1. A more

detailed discussion of the ewsmnd the synoptiscale environment is stwvn in Sec3.1

FIGURA 2

2.3. Radars data

The hree radaremployed in this study wetecated in Sdo Roque (23.602°S,
47.094°W, 1147 m altitud&§R), Salesopolis (23.600°S, 45.972°W, 916 m altitRle);
and Campinas (22.813°S, 47.056°W, 680 m altit@f®, seeFig. 1and Table 2 for a
detailed description of all radarEhe volumetric data iavailable eaclb minutes for the

CPradarand 10and15 minutedor the SRandSL radars respectivelyin this study, only
7
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volumetric data everg0 minutes vereused in the DAcycling processData every 30

minutes were used falne forecasevaluation.
2.4. WRFand WRFDA

The model used in the study was the Weather Resaatfrorecashg model
(WRFARW - Skamarock, 2008), version 3.9.14nd its 3DVAR data assimilation
system (WRFDA3DVAR), version 3.9.1 (Baker et al., 2004). It iteratively minimizes
the cost function defined by:

B %’H ERTIA CH ER )

where 0 and 0 stand for the backgroungi.e., the previous model forecasihd
observation terms, respectively. The t€tis the control variable (CV) defined Bly

N o0 o0 ,wheref is the decomposition of the background error covaridghea
A f i{'; 0 is the full analysis variabl and® is the background variable. The
innovation vectors that measures the departuresablbservatiod from its counterpart
computed from the backgrounal is given by"H 6 & & . Here, € is the
linearization of the nonlinear observation opera@tqrandr| is the observation error
covariance matrix.

Following Sun et al. (2016}the CV used in this study are velocity
components u and v, temperature T, surface pressure Ps, and-psaiwdnhumidity
(RHs, where the humidity is divided by its background). For reflectivity data assimilation,
the retrieved rainwater mixing ratio was used as CV, following Wang et al. (2013), in

order to avoid the nonlinearities issues caused by the lineanzaft the observation

8
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operator, required by the incremental formulation (Courtier e1294).

2.5. Model configuration

The Global Forecast Syste(@FS forecasts from the National Centerf®r
Environmental Prediction (NCER)ereused as initial and boundary conditidiG/BC)
for the outermost WRF domain (d01). The GFS is a T1534 global model with 64 vertical
levels. The model output is interpolated to a 0.25° resolution grid, which is uged in
study.Both the IC/BC and theynoptic scale analysis of each casedthe 1200 UTC
GFSruns.

Four microphysics schemes weeenployed Thompson, Morrison, WDM6
(WRF DoubleMoment 6Class)and WSM6(WRF SingleMoment 6Clasg. The four
microphysics schemes combined with four DA methodologietuding no DAyesulted
in sixteen runs for each caseee Table 3 for the description of the different running
configuration.These runs were used to verify iain oneis the best combination of
microphysicsscheme and assimilation methodology, and also to evaluate the sensitivity
of each factor separately (Sec. 3.2).

The cycling methodology is described in F8y.For all 5 cases four
continuously cycled analyses were performed at 1500, 1600, 47d 1800 UTC and
then a éh forecast ensuedror the experimenttabelled anCYnDA and nCYyDA the
cycling was not performed, instead threetime DA at 1800 UTC wasun and then a6

h forecast took place.

FIGURE3
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2.6. Statistical verification

Several statistical indices were calculated using the composite reflectivity field
generated by the simulations and the composite reflectivity field observed by the radars.
The contingency table (Table 3) is used to evaluate the simulation reflectilatyrfie
respect tdts observed counterparfhe total numbers of hits, misses, false alarms and
correct negatives in the domain are used to calculate the false alarm ratio (FAR; Eq. 1),
the probability of detection (POD; Eq. 2) and the critical succesx ((@®l; Eq. 3).

Quai Qoo wi ai

0O —————. ..., 1
QAT Qa4 i (1)

- ™Mo i
000 2
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5 'O ™Mo i 3
™MoiaQi | Mdai Qoo (3)

The other indices used to evaluate the simulations are thenesot square error
(RMSE; Eq. 4) and the fractional skill score (FSS; Eq. 5; Roberts and Lean, 2008). The
FSS is calculated using the reflectivity thresholds of 30, 40 and 50 dBdindf 1, 2

and 3 km.

YO YO "© 6 (4)
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where F and GQtands foithe forecast and observed reflectivity field, respectively, the k

subscript represents the grid point and N the total number of gpdints.
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where the Ry and R are the fractional coverages of reflectivity in thegkid point

thatexceeds given threshold and N is the total numbaegrifl pointsin the domain.

3. Results

3.1 Cases description and synoptic environment

Figure 2 shows the composite radeftectivity of the 5 cases used in this study.

The time shown in Fig. 2 are approximately when severe weather was reported at surface,

as indicated in the figure. The cases vary from mature ¢jnaar convective systems
(QLCS) (Figs. 2a,ll to isolated thunderstorms storms (Fig. 2b). This is an important
characteristic of the cases selected because the results of this research arentaingéor
events withdifferent types of convective organization. The Decen¥etase (Fig. 2a)

is characterized by a large number of storms over the do&antluding a QLCS in the

northern part of the area that was attributed to several reports of severe winds in Campinas

region. Isolated storms formed over the S&o Paulo metropolitan region inethraift
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of February22"¥ (Fig. 2b) and caused hail and flash flooding in the area. On Mérch
(Fig. 2c), a large area of precipitation covered most of the study region, with embedded
severe storms in the northern sector causing hail and winds. The €@cG&lamong
the studied cases occurredMay 5™ (Fig. 2d), and was responsible for multiple severe
wind reports and flooding. Finally, the Octolat" (Fig. 2e) severe storms formed north
of Campinas, presented Doppler velocity couplets indicatingeatdtiring several radar
scans (not shown), and were responsibletimngwinds and hail.

The synoptiescale 506hPa configuratior{Vorticity and winds at 500 hdy at
1800 UTC for each case is shown in FigAt 1800 UTCof Decembe™ (Fig. 4a), a
cyclonic vorticity maximum was located upstream of the study region and caused lifting
due to cyclonic vorticity advection (not shown). This trough was associated with colder
air at 500 hPa (temperatures belio®iC), which increased the instabilitytivtime. The
relatively strong 500Pa flow (1520 m $¢%) contributed to high wind shear and
convective organization (Fig. 2a). Weak midlevel flow predominated in the study region
during the isolated stormsi&ebruary 2" (Fig. 4b). The absence of a soe of synoptie
scale lifting suggests these storms formed due to radiative surface heating and the
increasng of thermodynamic instability during the afternoon. Tase oMarch6™ (Fig.
4c) also occurred under weak midlevel flow, which contributedht® glow storm
movement and the occurrence of flooding. Similar toDheembeB™ case, on Map™
(Fig. 4d) a synoptiescale trough upstream of the study region caused ascent and midlevel
cold advection, and also contributed to intensify the wind shehoeaganize the QLCS.
The storms occurred on Octob27" formed downstream of a midlevel vorticity

maximum embedded in strong zonal flow (Fg).
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3.2.Results of DA: Increments and OMB/OMA profiles

This section shows the impact of radar DA onahalysig(i.e., the output from
the DA system) Thus, only experiments with DA are considered, i.e. nCYyDA and
yCYyDA. The first question addressed is regardingthe DA behavior for each
microphysics.

Figure 5 shows the averaged vertical profiles dbservation, innovation
(observation minus backgroundhd residualobservation minus analysi$pr radial
velocity and rainwater, snow and graupel mixing ratios. The first important result is that
the residual is always close to zero on the entire prdfilmeans that the DA is capable
of vanishing almost all the innovation and, thus, bringing the background closer to the
observation. Another interesting finding is that while almost no difference is observed
among microphysics in the radial velocity pl®f and just a small difference in the
rainwater mixing ratio, the snow and graupel profiles have shown the greatest differences.
Figure5 shows clearly that after 4 cycles, the Thompson microphysics parameterization
produces much more snow then the athen the other hand, Morrison microphysics
produces much more graupel than observation, followed by WSM6 e WDM6. Although
Thompson also overestimates graupel, it is much closer to observations than the other
microphysics. Regarding rainwater, except fdDMb, the profiles are similar, showing
small overestimation below 3 km and underestimation above that level. WDM6
overestimates the entire profilé.t 6 s i mportant t o poi nt
observations come from the estimation using the relatipadglom Gao and Stensrud
(2012 that is employed in the WRFDA.

From the DA point of view, the overasiation of snow and gupel by Thompson and

13
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Morrison microphysics parameterizations, respectively, triggers a balance problem. The
greatest is the innovation, the greatest should be the analysis imbalance caused by the
3DVAR DA. The results showed in Fi§.for the residual is quite good, however, it
should be taken into account that the average considers only where radar data are
available, which means that where radars are not available the residuals keep large and it
will affect the forecast started frothat analysis. Also, because of this heterogeneous
reduction of the residuals, the balance of the analysis is affected.

Figure6 shows an example for case of Decemb&r2D16, of the innovations,
increments and residuals of snow and graupel for each microphysics. It clearly shows
overestimation of graupel and snow for Morrison and Thompson microphysics, also
shows that the residuals is very small, which implies thaDizgrocess was able to
reduce the innovation. Figuéaalso shows large area without radar data, where DA could
not correct the mentioned overestimation. Therefore, although the ability of DA to correct
the microphysics concentrations clearly does not migpen the microphysics, the
importance ofchoasing a proper parametrization is still an important step to get an

accurate forecast.

3.3.Sensitivity to microphysics parameterization

In this section, the four microphysics schemeseaetuated for the fiveases.

Figure7 shows the RMSE and FSS (for the@®BZ threshold) of the average
among all the five cases and all the four DA methods for each microphysics
parameterizatioremployed.The RMSE (Fig.7a) in general decreases from 30 to 90

minutes of forecast, and then increases again. Simulations using the Thompson
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microphysics present theiest RMSE in all forecast times, followed by the simulations
using the Morrison scheme. The FSS (Fig), on the other hand, is lower in Thompson
simulations, but the difference is small between all the microphysics schemes. In terms
of the reflectivity @ttern, simulations with Thompson have a better depiction of the
convective and stratiform areas, while the other microphysics tend to overestimate the
reflectivity values, ag will be shown latter. For this reason, in this study we will use the

Thompsommicrophysicsas a referencia the analysis of the different DA methods.

3.4 Sensitivity to radar DA method

This section presents the statistieatificationsfor the different DA methods.
Firstly, two cases with relatively good arejularmodel performace are described. The
model errors in representing convective and stratiform areas and how can the radar DA
improve this can be accessed through the analysis of the reflectivity fields.

Figure8 shows the observed and simulated composite reflectivithéokarch
39 case. The yCYyDA -h forecast (Fig8d) was able to reprodudke most intense storm
in the area over the northwestern part of the domain 8&jgeven though the locatian
shiftedto North, compared to observatiom the southern part of the domain (around the
24°S latitude), the westast band of precipitation observed at 2100 UTC (&6y.is
formed in the simulation 2 h earlier (F&g), and by 2100 UTC (Fidf) it has dissipated
in the model. By comparing ¢hyCYyAD simulation (Fig.8d,e,f) with the nCYyAD
simulation (Fig.8g,h,i), the DA cycle causes a better representation of the severe
thunderstorms in th@orthwesternpart of the domain with 1 hour of forecast. The

precipitation band that remains aftee thevere storms dissipate at 2000 and 2100 UTC
15
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(2- and 3h forecasts, respectively) is broader in the yCYyDA simulation @ige,f),

which better agrees with the observation. Other noteworthy characteristic is the larger
area with precipitation over tltomain in the yCYyDA simulation when compared to all

the other simulations (Fi@gi 0), which is observed in all simulated cases (not shown).

The simulations without radar DA (yCYnDA and nCYnDA) show a lower
precipitation coverage over the domain (Fig$0) when compared to the simulations
with radar DA (Figs.8dii). The yCYnAD (Figs.8jil) simulation presents a better
representation of the severe storms north of 19°S relative to the nCYnAD§ifigs).
simulation in all forecast hours, and is similattie yCYyAD (Figs.8di f) simulation in
this aspect. The model run with a previous precipitation in the model, which is generated
by the cycle, does a better job in simulating the severe storms in the area. The simulation
without DA and without cycle presena much lower precipitation coverage than
observed, mainly in the first hour of forecast (RB@). It is explained by the spinp
problem that take time to balance the modeliaitte convection.

Figure 9 shows the radar reflectivity factor andh2smulated reflectivity
forecasts valid for 2000 UTC 22 February 2017, when an isolated storm produced small
hail and flooding in the city of S&o Paulo. Similar to what occutoetthe other cases
(Fig. 8ai f), the yCYyDA simulation (Fig9b) forecasts precifation over a larger area
compared toobservation(Fig. 9a). The overestimated precipitation area is possibly
related to the character of precipitation: as the radar indicates several storms over the
region and the thermodynamic environment is considerably unstable (CAPE > 2000 J kg
1 not shown), the cycle aridA causes convective overturn throughout the domain. It is
also possible that nemeteorological radar echoes (e.g., areas with reflectivity factor

lower than 20 dBZ between 23°S and 24°S, 47°W and 48°W) are being interpreted by the
16
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model as areas of ac#ivconvection. Despite the widespread precipitation area in
yCYyDA simulation, the area of severe convection over the Sao Paulo metropolitan area
is relatively well indicated by the model.

The yCYnDA simulation (Fig9d) produces the best results in thiseeecause
it is able to forecast the severe thunderstorm very close to the observed stoi9a)(Fig.
and does not produce precipitation over a wide area as the yCYyDAStigwhich
suggests the DA is the reason for the overestimated precipitation yDASimulation.

Both simulations without cycle, nCYyDA (Fi§e) and nCYnDA (Figof), fail to forecast
the severe storm with 2 hours of simulation and in future times (not shown). These results
suggest that the cycle is importanpiacethe stormsorrectly.

Given the inability of the yCYyAD simulation for the Febru&g case in
forecasting the discrete convective mode that was observed, a test was performed in
which the radius of influence of the observations (radar reflectivity field) is decreased.
Fig. 9c shows the results of this simulation. There is no evident improvement in the
forecasted reflectivity field for this case. The charastierof the convection remains
more widespread than observed (Ba).

The temporal evolution ahe average atistical indices, for all five cases,
shown in Fig.10. These indices are averages of the simulations of all cases and all
microphysics schemes for each DA method. The RMSE (Fig) is lower in the
yCYYAD simulations for the entire period, excepttie Lh forecast, when it is lower
than the nCYyAD RMSE. Both simulations with radar DA have lower RMSE than
simulations without radar DA. Also, the RMSE increases with time in the simulations
with radar DA, but is less variable in simulations withoutaradA. The CSI (Fig10b)

showssimilar results, with higher CSI in simulations that use radar DA. For most DA
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methods, the CSlI increases with time, which is unexpected since the forecast skill tends
to decrease with time. However, most of the cases leadegrthunderstorms coverage in
the area in the first hours of forecast (most severe weather reports occurred between 18
and 19 UTC), so the CSI tends to increase when the stratiform precipitation dominates
the convective precipitation or the precipitatieaves the domain.

Both POD (Fig.10c) and FAR (Fig10d) agree with the general characteristic
of yCYyDA to overestimate the precipitation area. The POD is much higher in the
yCYyDA simulations, and the lowest POD occurs in simulations without cycle and
without DA (nCYnDA). The FAR, on the other hand, is very similar in all DA methods.
The combination of these two indices is better (higher POD and lower FAR) in the
yCYyDA, which evicence the ability of the radar DA to better localize the storms in the

simulation according to what the radar is observing in the analysis time.

4. Conclusions
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List of tables

Table 1: Characteristics and data availability for each studied case.

Dates

Approximate time of

severe weather repor

Convective mode

Available radar dats

03 December 201¢ 1900 UTC QLCS SR, SL and CP
22 February 2017 1930 UTC Isolated storm SR, SL and CP
06 March 2017 1900 UTC Storm cluster SR and SL

05 May 2017 2100 UTC QLCS SR, SL and CP
27 October 2017 1900 UTC Storm cluster SR and CP

Table 2: Radars characteristics.

- Sao Roque (SR) | Saleso6polis (SL) | Campinas (CP)
Wavelength 10.9 cm (Sband) | 10.638 cm (Shand) | 3.202 cm (Xband)
Beamwidth 2.0° 0.968° 1.3°
Polarimetric No Yes Yes

Doppler Yes Yes Yes
Elevations 15 8 17
Radial resolution 500 m 250 m 200 m
Azimuthal resolution 1° 1° 1°
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Table 3: Experiments

Experiment Microphysics With cycle | With DA
nCYnDA Morrison/Thompson/WSM6/WDM6 No No
nCYyDA Morrison/Thompson/WSM6/WDM®6 No Yes
yCYnDA Morrison/Thompson/WSM6/WDM®6 Yes No
yCYyDA Morrison/Thompson/WSM6/WDM6 Yes Yes

Table 4: Contingency table.
Observed
Yes No
Yes Hits False alarms
Forecast
No Misses Correct negatives
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List of figure captions:

FIG. 1. Map showing the location of the radars used in this study and the WRF
domains. (a) Topography (m) from the dO1 domain is shaded, and the WRF domains (d01,
d02 and d03) are shown along with the radars location (colored dots) and coverage
(colored cicles). (b) Topography (m) from the d0O3 WRF domain is shaded, SR is the
nonpolarimetric Sband radar located in S&do Roque (red dot and circle with 250 km
radius), SL is the polarimetrici®&and radar of Sales6polis (orange dot and circle with 250
km radiug, and CP represents thebénd polarimetric radar in Campinas (yellow dot and
circle with 100 km radius).

FIG. 2: Composite reflectivity (dBZat (a) 1900 UTC 03 December 2016, (b)
1930 UTC 22 February 2017, (c) 1900 UTC 06 March 2017, (d) 2100 UTC 05 May 2017,
and (e) 1900 UTC 27 October 2017. The reflectivity fields are generated by interpolating
the reflectivity from the closest radar to tieéRF dO3 domain (Fig. 1). The arrows
indicate the systems that caused severe weather, which occurred approximately in the
times shown in the figures.

FIG. 3: Schematic diagram of the cycling strategy.

FIG. 4: GFS analysis of 508Pa relative vertical vorticity (18s't, shaded),
geopotential height (dam, black contours every 3 dam), temperature (°C, grey dashed
contours every 2°C), and winds (it,3ennant is 25 mi % full barb is 5 m s, and half
barbis 2.5 m &) at 1800 UTC of (a) 03 December 2016, (b) 22 February 2017, (c) 06
March 2017, (d) 05 May 2017, (e) 27 October 2017. The d0O3 domain is shown in orange.

FIG. 5. Averaged vertical profiles of observation (OBS), innovation (OMB

observation mias background) and residual (OMAbservation minus analysis). The
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average is performed over the entire grid where radar data are available and for all 5 cases.

FIG. 6: Increments (left), innovations (middle) and residuals (right) of snow (a)
andgraupel (b) at 10 km for the case of Decemb&r2D16. From the top are show the
results for Morrinson, Thompson, WSM6 and WDM®6.

FIG. 7: Temporal evolution of (a) RMSE and (b) FSS (using thedBA
composite reflectivity as threshold) from &finutes forecasts (1830 UTC) to 3 hours
forecasts (2100 UTC). Both RMSE and FSS are averages of all the five cases and the four
assimilation methods.

FIG. 8: (a) Observed composite reflectivity at 2000 UTC 22 February 2017.
Simulated composite reflectivitg domain d03 (1 km horizontal resolution) at 2000 UTC
(2-h forecasts) 22 February 2017 of WRF runs (b) yCYyDA, Thompson, (c) yCYyDA,
Thompson with reduced radius of influence of radar data (more details in the text), (d)
yCYnDA, Thompson, (e) nCYyDA, Thopson, (f) nCYnDA, Thompson.

FIG. 9: (a,b,c) Observed composite reflectivity at 1900, 2000 and 2100 UTC 3
March 2017. Simulated composite reflectivity in domain d03 (1 km horizontal resolution)
at 1900, 2000 and 2100-(12- and 3h forecasts, respectiwgl3 March 2017 of WRF
runs (d,e,f) yCYyDA, (g,h,i) nCYyDA, (j,k,)) yCYnDA and (m,n,0) nCYnDA and
Thompson microphysics scheme.

FIG. 10: (a) Average RMSE, (b) CSlI, (c) POD and (d) FAR of all the 5 cases
and simulations using all the four microphysics scéefior each DA method according
to the line colors. Only values from 1830 UTC {8inhutes forecasts) to 2100 UTGH3

forecasts) are shown.
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