Study Cases of Cirrus Cloud Radiative Effect in Manaus Region during September – October 2014.

Boris Barja, Henrique Barbosa, Diego Alves Gouveia, Jorge Almeida

Mar/2016

Outline

IOP2 Lidar Network

- Lidar Setup and Experimental Site
- Side-by-Side Intercomparison
- Cirrus Clouds Measurements
- Cirrus Clouds Radiative Effects

The GoAmazon 2014/15 project

Experimental Sites

Lidar Signal

Method for cloud base/top Gouveia et al, Opt. Pura y Ap. (2014)

Method for cloud base/top Gouveia et al, Opt. Pura y Ap. (2014)

	UV Raman Lidar LFA (T0)	VIS Raman Lidar IPEN (T2)	IR MPL ARM mobile facil
Manufactor	Raymetrics	Raymetrics	Sigma Space
Laser	Nd-YAG	Nd-YAG	Nd-YLF
Wavelangth	355 nm	532 nm	532 nm
Vertical Resolution	7.5 m	7.5 m	15 m
Detection	355 nm (elastic), 387nm (N2) and 408nm (H20)	532 nm (elastic) and 608 nm (N2)	Co and Cross Pol

GOUVEIA, D. A at al. 2012

	UV Raman Lidar LFA (T0)	VIS Raman Lidar IPEN (T2)	IR MPL ARM mobile facil
Manufactor	Raymetrics	Raymetrics	Sigma Space
Laser	Nd-YAG	Nd-YAG	Nd-YLF
Wavelangth	355 nm	532 nm	532 nm
Vertical Resolution	7.5 m	7.5 m	15 m
Detection	355 nm (elastic), 387nm (N2) and 408nm (H20)	532 nm (elastic) and 608 nm (N2)	Co and Cross Pol

	UV Raman Lidar LFA (T0)	VIS Raman Lidar IPEN (T2)	IR MPL ARM mobile facil
Manufactor	Raymetrics	Raymetrics	Sigma Space
Laser	Nd-YAG	Nd-YAG	Nd-YLF
Wavelangth	355 nm	532 nm	532 nm
Vertical Resolution	7.5 m	7.5 m	15 m
Detection	355 nm (elastic), 387nm (N2) and 408nm (H20)	532 nm (elastic) and 608 nm (N2)	Co and Cross Pol

MPL System – Depolarization

MPL System – Depolarization

Side-by-Side Intercomparison

Side-by-Side Intercomparison

Local Time

Results

Frequency of Occurrence

- Macrophysical Properties
- Optical Properties
- Microphysical Properties

Frequency of Occurrence Data From 2014-08-17 to 2014-10-03 1.4 TOe T2 1.2 Τ3 Frequency of Occurrence 0.8 0.6 0.4 0.2 0 Ago Set Out Months

Frequency of Occurrence: Annual Cycle

Frequency of Occurrence

Local	Measurement year	Total	Wet Months	Dry Months
Manaus	2011-12	71%	78%	52%
Manaus (Calipso)				
NAZARYAN, 2008, JGR	2006-7	60-65%		
Maldivas				
(4.1°N, 73.3°E)				
SEIFERT et al., 2007, JGR	1999-00	43%	64%	35%
Ilha Nauru				
(0.5 °S, 166 °E)				
JM et al. , 2002, JGRD	1999	55%		
Mahé, Seychelles				
(4.4 °S, 55.3 °E)				
PACE et al., 2003, JGR	2003	54%		
Sul da França				
(43.9° N–5.7° E)				
HOAREAU et al., 2013,				
ACPD	1996-07	37%		

Cirrus has a large residence time

24

Cirrus has a large residence time

25

- Frequency of Occurrence
- Macrophysical Properties
- Optical Properties
- Microphysical Properties

- Occurrence range 8-19 km
- Thickness up to 7-8 km
- Apparent difference between Embrapa and Tiwa sites

	Base (km)	Mid (km)	Top (km)	Thickness	Temperature
Manaus	12.5 ± 2.4	13.4 ± 2.1	14.3 ± 2.2	1.82 ± 1.53	-57 ± 15 °C
Maldivas SEIFERT et al 2007 JGR	11.9 ± 1.6	12.8 ± 1.4	13.7± 1.4	1.8 ± 1.0	-58 ± 11 °C
Zonal Tropical SASSEN 2008 JGR	13.0		14.8		
<mark>Zonal Tropical</mark> NAZARYAN 2008 JGR	12.5		15		

- Frequency of Occurrence
- Macrophysical Properties
- Optical Properties
- Microphysical Properties

Optical Properties

- Subvisuais (τ<0.03)</p>
- Thin cirrus $(0.03 < \tau < 0.3)$
- Cirrustratus ($\tau > 0.3$)

- Frequency of Occurrence
- Macrophysical Properties
- Optical Properties

32

D

Conclusions Observations – Long term

- Well defined annual cycle occurring in 50% to 85% of the time.
- Macrophysical properties, rainfall and wind direction patterns indicate deep convection and the transport from other regions as its main source
- 24% of the clouds are subvisual, 42% are optically thin and 35% of them are cirrus stratus, with a change only in JJA, showing more aged clouds

Conclusions Observations – IOP2

- Higher occurrence of clouds compared to 2011/12.
- Apparent difference in the macrophysical properties between Embrapa and Tiwa sites.
- approximately the same optiacal depth for T0e and T2, with about 65% considered as thin clouds. T3 results needs further validations.
- The distribution of lidar ratio showed a wide range of values indicating thick plaques and long columns as the main composition of ice crystal. However, the behavior with temperature needs further investigation

Cirrus Radiation Balance

Cirrus Cases

Calipso 2014-09-03

532 nm Perpendicular Attenuated Backscatter km⁻¹ sr⁻¹ UTC: 2014-09-03 17:48:48.1 to 2014-09-03 18:02:16.8 Version: 3.30 Standard Daytime

Calipso 2014-09-05

532 nm Total Attenuated Backscatter, km⁻¹ sr⁻¹ UTC: 2014-09-05 17:36:10.1 to 2014-09-05 17:49:38.8 Version: 3.30 Standard Daytime

30 1.0x10⁻¹ 1.0x10⁻¹ 9.0 8.0 7.0 5.0 4.0 3.0 2.0 1.0x10⁻² 25 20 8.0 7.5 7.0 6.5 Altitude, km 6.0 15 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 10 1.0x10-3 9.0 5 8.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 0 1.0x10-4 -28.84 -22.76 -16.67 -10.57 -4.46 1.65 7.77 13.84 Lat -34.90 Lon -52.16 -53.80 -55.30 -56.71 -58.06 -59.37 -60.67 -61.98 -63.30

UTC: 2014-09-05 17-22-44 Version: 3.30 Standard Daytime

180

UTC: 2014-09-05 05-04-12 Version: 3.30 Standard Nighttime

Results

532 nm total particulate Extinction coefficient [km-1] from the day 02-Sep-2014 lidar Manaus

TIWA T2 SITE, SEPTEMBER 3, 2014 SHORTWAVE CLOUD RADIATIVE EFFECT [W/m²]

532 nm total particulate Extinction coefficient [km-1] from the day 02-Sep-2014 lidar Manaus

Results – CRF TOA

Results – CRF Surface

EMBRAPA(T0e)/TIWA(T2) SITES, SEPTEMBER 3 - 5, 2014 SHORTWAVE CLOUD RADIATIVE EFFECT & COD

Obrigado!