Ozone net production rate within the Manaus urban plume, in Central Amazonia

Luciana Rizzo

And collaborators from LFA/USP, INPA, UEA, Harvard University and PNNL

Introduction

GoAmazon 2014/15 T2 and T3 sites

Manaus emission pattern might have changed over time:

- increase on the vehicle fleet
- moving to cleanner power plant fuels

Does the combination of BVOCs and urban emissions increase O_3 production downwind of Manaus?

Net production rate of trace gas species along the transport from Manaus to downwind areas

$P_{net} = P_{chemistry} + Inputs - Dillution - Deposition$ (ppb/h)

$$P_{net} = \frac{O_3(\vec{r}, t_0 + \Delta t) - O_3(\vec{r_0}, t_0)}{\Delta t}$$

Is there signifficant O₃ photochemical production along the transport of the urban plume, from the source to downwind areas?

 $\overrightarrow{r_0}$: position of the source (Manaus)

 \vec{r} : position downwind of Manaus

 t_0 : when plume leaves Manaus

 Δt : transport time from $\overrightarrow{r_0}$ to \overrightarrow{r}

O₃ enhancement factor with respect to background conditions

$$EF_{O3} = \frac{dO_3}{dCO} = \frac{O_3 - O_3(bkg)}{CO - CO(bkg)}$$

Evalute the O₃ enhancement over background conditions accounting for the dillution effect CO:

- Relatively long chemical life
- Low solubility in water
- Mostly affected by dillution (within the time frame of a day)

Ground based data (T2 and T3 GoAmazon sites)

Urban plume detection at T3

Criteria 1: urban plume signature

 $CN_{background} = 500 \ cm^{-3}$ $CO_{background} = 110 \, ppb$

> Range Was observed in 21% of valid data at the T3 site

- Criteria 2: Hysplit backtrajectories
 - All points to the east of T3
 - Within the boundary layer (height<1000m)

- Typical transport time: 7 hours.
- Requirements matched in 37% of the measurement period

Urban plume detection at T3

Urban plume detection at T3

O Combination of criteria 1 (plume signature) and criteria 2 (backtrajectories):

10% of the valid data period at the T3 site

• There is another method proposed to track the urban plume at T3 (Ryan Talman's). Comparison between the two methods is on its way.

G1 airborne data

G1 dataset

35 flights
#1-16 wet season
#17-35 dry season

Plume transects at ~constant altitudes
 75% <700 m;
 25% 900-1700 m

G1 plume/background detection

Visual identification of plume transects: CO, CN and absorption peaks
Acetonitrile used as a tracer for biomass burning plumes

Average impacts of the Manaus urban plume over O₃ concentrations at T3

Average impact of the Manaus plume over O₃ concentrations at T3

O₃ average diurnal cycle at T2 and at T3

Average conditions are very similar at T2 and T3 when impacted by the urban plume

Impact of the Manaus plume at T3 at specific times of the day

Ground based measurements

- Avoided rainny days
- Morning plume only (3:00-9:00 LT, 26 days)
- Afternoon plume only (13:00-18:00 LT, 20 days),

Airborne O₃ X distance from Manaus

G1 data show an increase on O_3 as soon as the airplane leaves Manaus.

O₃ net production rate within the plume, in reference to the urban plume source

O₃ net production rate along the <u>daytime</u> transport of urban plume

O₃ net production rate from G1 data

surements Wet Season, Altitude 400-700 m Dry Season, Altitude 400-700 m 50 50 40 40 O₃ net production rate (ppb/h) 30 30 20 20 .10 .3 10 6.6 0 0 -10 -10 ~T3 ~T.3 -20 -20 -30 -30 10 20 50 70 90 10 20 50 70 90

Distance to Manaus (km)

O₃ net production rate (ppb/h)

Airborne

Distance to Manaus (km)

O₃ net production rate comparison

	Median (ppb/h)	p25 (ppb/h)	p75 (ppb/h)	Observation
T3, 2014	2.2	0.8	3.6	Ground based
G1, 2014	3.7	2.0	5.7	Alt<700m; Distance 60-75km
LBA/CLAIRE July 2001	10-15	-	-	Distance 40-70km; Khun et al., 2010
ABLE2B 1985	~4	-	-	Alt~200m; Distance ~100km; Andreae et al., 1988

Nowadays fast O₃ production driven by changes on Manaus emissions patterns (VOC/NOx)?

O₃ enhancement factor with respect to background conditions

T3 enhancement factor dO_3/dCO

Local Time

Local Time

T3

G1 enhancement factor dO_3/dCO

10km: y=0.02 + 2.4 (r²=0.01) 20km: y=0.25 + 5.0 (r²=0.34) 50km: y=0.09 + 16 (r²=0.00) 70km: y=0.82 - 4.6 (r²=0.56) 90km: y=0.56 + 7.2 (r²=0.30) 10km: $y=-0.01 + 6.1 (r^2=0.00)$ 20km: $y=0.28 + 20 (r^2=0.35)$ 50km: $y=0.56 + 10 (r^2=0.61)$ 70km: $y=0.57 + 3.8 (r^2=0.42)$ 90km: $y=0.34 + 13 (r^2=0.27)$

G1 enhancement factor dO_3/dCO

Airborne measurements (biomass burning plume)

Enhancements from biomass burning plumes are much smaller in comparison to urban plumes

Khun et al. (2010) O₃ EF for a single flight in the dry season of 2001

Fig. 7. ΔO_3 to ΔCO enhancement factors as a function of downwind distance from Manaus City during Flight #18 on 19 July 2001, 10:00–14:00 LT. Data from all transects of each vertical profile are binned. Slopes of a linear regression using the reduced-major-axis (RMA) regression method are given. Khun et al., ACP, 2010 G1: slope dO₃/dCO =
 0.57 in the dry season at
 70km distance

• T3: slope $dO_3/dCO =$ 0.27 in the dry season

Summary

- ${}^{\rm O}$ On average, the O_3 peak is similar at T2 (source region) and T3 (when impacted by the urban plume).
- Airborne data shows that most of O₃ is formed within 20 km from Manaus.
- Relatively low O_3 net production rates, suggesting that the plume is oxidized within ~20 km from Manaus.
- Greater O₃ enhancement factors in urban plumes in comparison to biomass burning plumes.
- O₃ enhancements with respect to background in 2014 are smaller that observations from 2001.

Thanks for the attention!

lrizzo@unifesp.br