Ground measurements of aerosol hygroscopicity during Acridicon/Chuva campaign

2014-201

H.M.J. Barbosa, M. L. Kruger, R. Thalman and J. Wang on behalf of the GoAmazon and ATTO teams

> ACRIDICON-CHUVA Ilha Bela, March 1st 2016

R. Thalman

Biogenic/Ocean Emission

Dust

R. Thalman

Motivation

- To quantify aerosol indirect forcing requires the knowledge of CCN concentration.
- Organics often dominate submicron aerosol mass, and consist of thousands of species with hygroscopicities (κ, Petters & Kreidenweis, 2007) ranging from 0 to 0.3.
- CCN concentration are sensitive to organic hygroscopicities, especially for aerosols under natural conditions (i.e., pre-industrial era, Liu and Wang, 2010).

Size resolved CCN measurements

Particle Activation

R. Thalman

Experimental Sites

150km

How does anthropogenic pollution modify aerosol CCN activity in what would otherwise be a clean atmosphere?

T0z 🤳

60km

Т3

T0e

T0a

Instrument Setups

- T3, 70km downwind, 10/Mar/14 to 3/Mar/15
 Fix size, scan SS (changing Temp & Flow)
 Long DMA
- T2, 5km downwind, 15/Sep/14 to 28/Feb/15
 Fix SS, scan size
 - Long DMA
- T0, 150km upwind, continuous from Mar/14
 - Fix SS, scan size
 - Nano DMA (different transfer function)

T0a site – 150km upwind

Photos: ATTO team

CCN Data @ ATTO during Apr 2014

- long range transport ~10 Apr 2014
- high CN conc. correlate with low $K \rightarrow$ high organic fraction

Mira Pöhlker et. al. ACP, in prep.

S. Carbone, AGU 2015 ,A31A-0019

CCN Data @ ATTO during Sep 2014

- Kappa (K) for Aitken mode \neq K for Accumulation mode
 - \rightarrow differences in chemical composition
- high CN conc. correlate with low $K \rightarrow$ high organic fraction Mira Pöhlker et. al. ACP, in prep.

kappa size dependence @ ATTO

ATTO Mar 2014- Feb 2015

Diurnal cycle @ ATTO

Mira Pöhlker et. al. ACP, in prep.

kappa size dependence @ ATTO

transport season
wet season \rightarrow Mar to Apr-13-2014 and Jan to Feb-2015wet season
transition season
dry season \rightarrow Apr-13 to May-2014 \rightarrow Jun to Jul-2014 \rightarrow Aug to Dec-2014

Mira Pöhlker et. al. ACP, in prep.

Diurnal cycle @ ATTO

T3 site – 70km downwind

Photo: R. Thalman

- Mixed medium-field Manaus aged plume and clean conditions
- Affected by long and short-range BB

Photo: J. Beat

Particle and organic κ @ T3

Accumulation mode (ave 112, 142 and 171nm)

Organic hygroscopicity (κ_{org}):

$$k_{org} = \frac{1}{x_{org}} \left(k_{CCN} - k_{NH_4NO_3} x_{NH_4NO_3} - k_{(NH_4)_2SO_4} x_{(NH_4)_2SO_4} \right)$$

Volume fractions derived from AMS and absorption data

Particle and organic κ @ T3

Accumulation mode (ave 112, 142 and 171nm)

Diel cycle, background, wet season @ T3

Diel cycle, polluted, wet season @ T3

Diel cycle, biomass burning, dry @ T3

Non-refractory species

Non-refractory species

S. Carbone, AGU 2015 A31A-0019

Hygroscopicities of PMF factors

 Factors were identified through positive matrix factorization (PMF) analysis of HR-ToF-AMS data during the two IOPs.

$$k_{org} = x_{factor1} k_{factor1} + x_{factor2} k_{factor2} + \dots$$

 Hygroscopicities of PMF factors were derived using multivariable linear regression of the time series of κ_{org} and PMF factor volume fractions.

Variations of organic hygroscopicity (wet season)

The variation of O:C is largely due to the variation of POA volume fraction in the particles

Variation of organic hygroscopicity (dry season)

The variation of O:C is largely due to the variation of POA volume fraction in the particles

T2 site – 5km downwind

- Most of the time in near-field Manaus plume
- Affected by longrange BB

CCN data @ T2 14/Sep/2014 – 1/Mar/2015

- Kappa (K) for Aitken mode ≠ K for Accumulation mode
 → differences in chemical composition
- Episodes of high hygroscopicity in Feb/2015

For IOP2, dry season – High SS

	D _c	S _c	Карра
ТО	77 nm	0.47 %	0.14±0.03
T2	81 nm	0.58 %	0.08±0.02
Т3	75 nm	0.57 %	0.10±0.04

For IOP2, dry season – Low SS

	D _c	S _c	Карра
ТО	175 nm	0.11 %	0.22±0.05
T2	165 nm	0.09 %	0.11±0.02
Т3	171 nm	0.16 %	0.11±0.04

Kappa x Activation Diameter IOP2, Sep 16-Oct 16

Sec.

CCN data @ T2 14/Sep/2014 – 1/Mar/2015

Manaus direction

CCN data @ T2 14/Sep/2014 – 1/Mar/2015

CCN data @ T2 14/Sep/2014 – 1/Mar/2015

Conclusions

- UnpreAt all sites, the Aitken and Accumulation modes show different K with smooth transition at T3, but sharp at T0 and T2
- K shows no clear diurnal cycle, except in dry season
- **T0:** Well mixed and aged aerosol. High CN conc. correlate with low **K** => high organic fraction
- T3: κ_{org} under natural conditions during the wet season is ~0.15, higher than plume or BBA
- **T2:** Least hygroscopic. Aitken mode not as oxidized as at T3, but accumulation mode is.