Thunderstorms on the Brazilian Horizon ISS020-E-47807, October 6, 2009

No.

Cloud side remote sensing Droplet size profiles from specMACS

Florian Ewald, <u>Tobias Zinner</u>, Tobias Kölling, Tina Jurkat, Bernhard Mayer

Aerosol and Convection

Cloud side remote sensing

M

From 1D Nakajima-King

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Cloud side remote sensing

From 1D Nakajima-King

for many realistic **3D cloud side cases**

3D lookup data base

Statistical retrieval based on forward simulations:

• Regional Atmospheric Modelling System (RAMS, Jiang an Li 2009, Feingold et al. 1996)

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

- warm cumulus (RICO)
- Forward imagery from 3D RT model: 12 scenes x 4 viewing directions = 48 cases varying with varying SZA
- → lookup table: 1.5·10⁹ radiance pairs binned by scattering angle

3D lookup data base

• Regional Atmospheric Modelling System (RAMS, Jiang an Li 2009, Feingold et al. 1996)

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

- warm cumulus (RICO)
- Forward imagery from 3D RT model: 12 scenes x 4 viewing directions = 48 cases varying with varying SZA

→ lookup table: 1.5·10⁹ radiance pairs binned by scattering angle

3D lookup data base

• Regional Atmospheric Modelling System (RAMS, Jiang an Li 2009, Feingold et al. 1996)

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

- warm cumulus (RICO)
- Forward imagery from 3D RT model: 12 scenes x 4 viewing directions = 48 cases varying with varying SZA

→ lookup table: 1.5·10⁹ radiance pairs binned by scattering angle

Synthetic test cases

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Synthetic test cases

Cloud model microphysics

LUDWIG-MAXIMILIANS-

UNIVERSITÄT MÜNCHEN

MU

Retrieved efffective radius

MIN

VIIRS data, 27 Sept. 2014

AC17 VIIRS Overpass - fRGB (17:38:00-17:43:00)

AC17 VIIRS Overpass - 11.45 µm

specMACS RGB and shadow mask

specMACS RGB and vegetation mask

specMACS RGB and phase detection

ACRIDICON case AC17

MIN

specMACS RGB and effective radius retrieval

ACRIDICON case AC17

M

specMACS RGB and effective radius retrieval

CAS-DPOL in-situ profile

specMACS RGB, effective radius retrieval, and altitude

First specMACS derived droplet size profile!

specMACS RGB, effective radius retrieval uncertainty due to retrievable technique and calibration uncertainty

Summarizing

cloud side remote sensing with specMACS

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- → statistical microphysics retrieval combined with
- → O2A derived distance/ cloud surface orientation

Summarizing

cloud side remote sensing with specMACS

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- statistical microphysics retrieval combined with
- → O2A derived distance/ cloud surface orientation

NEXT:

- systematic comparison to in-situ cloud for ACRIDICON
- Stronger integration of cloud shape information into retrieval

Thunderstorms on the Brazilian Horizon ISS020-E-47807, October 6, 2009

