

Vertical profiles of thermodynamic phase and identification of mixed-phase layers in tropical deep-convective clouds

<u>Evelyn Jäkel</u>¹, Manfred Wendisch¹, Tobias Donth¹, Florian Ewald², Tobias Kölling², Martina Krämer³, Anja Costa³

¹Leipzig Institute for Meteorology (LIM) University of Leipzig, ²Meteorological Institute, Ludwig-Maximilians-University Munich (LMU) ³Forschungszentrum Jülich (FZJ)

Conference on "Aerosol-cloud-precipitation interaction in Amazonia during the ACRIDICON-CHUVA campaign" Ilha Bela | Brazil | 29 February – 2 March 2016

e.jaekel@uni-leipzig.de

1. Motivation

2. Phase discrimination method

3. Examples

Data selection Height determination Phase index profiles Comparison with MODIS and insitu data

4. Conclusion & Outlook

UNIVERSITAT LEIPZIG Faculty of Physics and Earth Sciences

Thermodynamic phase

Radiative energy budget

Retrieval of particle size

JÜLICH FORSCHUNGSZENTRUM

LMU

188 888

Conclusion

Motivation

UNIVERSITÄT LEIPZIG **Motivation** LMU Faculty of Physics and Earth Sciences Thermodynamic phase **Precipitation formation Radiative energy Retrieval of** & cloud lifetime budget particle size -40 Maritime -30 Continental Ice Temperature (°C) -20 Mixed-phase $\odot \circ \overset{\circ}{\square} \overset{\frown}{\square} \circ$ -10 Μ Coalescence 0 Ο 0 R 0 0 10 0 Diffusion ° 。 20 5 10 15 20 25 30 35 0 Effective Radius (µm) Rosenfeld and Woodley (2003)

UNIVERSITÄT LEIPZIG

Motivation

Method

Imaging spectrometer (specMACS)

- 1312+320 spatial pixels in line
- 400 + 256 spectral pixels (VIS+NIR)

Motivation

Examples

UNIVERSITÄT LEIPZIG

Method

- 1312+320 spatial pixels in line
- 400 + 256 spectral pixels (VIS+NIR)

Method

Jäkel et al. (2013)

Phase index: $I_{\rm p} = \frac{I_{1700} - I_{1550}}{I_{1700}}$

 $\begin{array}{r} \text{positive} \rightarrow \text{ice} \\ \text{negative} \rightarrow \text{liquid water} \end{array}$

Jäkel et al. (2013)

Phase index: $I_{\rm p} = \frac{I_{1700} - I_{1550}}{I_{1700}}$

 $\begin{array}{c} \text{positive} \rightarrow \text{ice} \\ \text{negative} \rightarrow \text{liquid water} \end{array}$

Phase index depends on:

- particle size
- viewing geometry

Motivation

Method

Examples

Conclusion

UNIVERSITÄT LEIPZIG Faculty of Physics and Earth Sciences

Motivation Method Examples Conclusion

Motivation

Examples

Cloud mask

significant fraction of diffuse radiation originated from unknown directions

Motivation

Examples

AC13

UNIVERSITÄT LEIPZIG Faculty of Physics and Earth Sciences

#4: 18:54 – 18:56 UTC

UNIVERSITÄT LEIPZIG Faculty of Physics and Earth Sciences

l C e

Liquid

AC13

Data Selection

#1: 17:54 – 17:57 UTC

#2: 18:06 - 18:09 UTC

Conclusion

Method

Examples

#3: 18:48 – 18:50 UTC

#4: 18:54 – 18:56 UTC

AC13

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Examples

#5: 18:57 – 19:03 UTC

Data selection ✓ Height determination

AC13

Examples

Motivation

Height Determination

Stereogrammetry

• Image correction (roll, pitch, camera distortion)

FOVh = 91° FOVv = 59°

Method

Tie point selection

AC13

Motivation

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Method

Examples

Conclusion

Distance to cloud (km)

AC13

Motivation

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Examples

Distance to cloud (km)

AC13

Motivation

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Method

Examples

Conclusion

AC13

Motivation

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Examples

Conclusion

LMU

10000

Phaseindex Profiles

Motivation

Phase Identification

14 12 10 Altitude (km) 8 6 ice 2 mixed phase liquid 0 11 12 13 14 15 16 17 2 3 1 5 6 8 10 Cloud #

AC13 – polluted case

Data selection ✓
Height determination ✓
Phase index profiles ✓
Phase identification

LMU

AC13

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Data selection ✓
Height determination ✓
Phase index profiles ✓
Phase identification ✓
Comparison with MODIS and insitu data

Comparison

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Data selection ✓
Height determination ✓
Phase index profiles ✓
Phase identification ✓
Comparison with MODIS and insitu data

Comparison

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Data selection ✓
Height determination ✓
Phase index profiles ✓
Phase identification ✓
Comparison with MODIS and insitu data

Comparison

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Data selection ✓
Height determination ✓
Phaseindex profiles ✓
Phase identification ✓
Comparison with MODIS and insitu data

Comparison

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Comparison

AC12

Motivation

Method

Examples

Conclusion

UNIVERSITÄT LEIPZIG

AC12

UNIVERSITÄT LEIPZIG

AC10

Comparison

G

Liquid

AC10

#4

Gopro

SpecMACS RGB

SpecMACS Phaseindex

AC10

Motivation

Method

Examples

Conclusion

JÜLICH FORSCHUNGSZENTRUM

LMU

880 839 888 839

-40

-20

Temperature (°)

AC10

Cloud #

Motivation

Method

Examples

Conclusion

AC18

Motivation

Method

Examples

Conclusion

Comparison

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

Conclusion & Outlook

18.828 UTC 18.832

8.830

Conclusion:

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences

- Advantage of imaging technique
- Mixed-phase layer could be identified
- Highly variable phase profiles observed
- So far: no impact on pollution on vertical distribution of phase

Outlook:

- Link to CCN data?
 Comparison with insitu effective radius profiles
 Advice for the future: stick on one cloud
 Ground-based measurements at ATTO
 - Ground-based measurements at ALIC (combination with IR-camera)

18.824

18.826

140 120

100 80 60

Extra

Screenshot –Data selection Tool

-10

-20

0

Gopro-Image

SAVE

2000

1000

3000

END

UNIVERSITÄT LEIPZIG

Faculty of Physics and Earth Sciences