## Primary & secondary biogenic aerosols serving as nuclei for cloud droplets & ice crystals

## **Ulrich Pöschl**

Max Planck Institute for Chemistry Multiphase Chemistry Department Mainz, Germany www.mpic.de u.poschl@mpic.de

#### **Introduction & Motivation**

- bioaerosol cycling & effects
- rainforest aerosol composition & sources

#### **CCN Activation in Pristine vs. Polluted Air**

- characteristic parameters & regimes
- aerosol cloud droplet closure

## **Aerosol Cycling & Effects**



# Atmosphere & Climate

- > aerosols & gases
- clouds & precipitation
- ➤ radiation & dynamics

Mechanistic understanding, quantitative prediction & human influence ?

- spread & change of organisms & ecosystems
- human, animal & plant diseases

## Biosphere & Public Health

Pöschl Angew Chem 2005

## MPIC Atmospheric & Biological Particle Size

Aerosols: solid & liquid nano- & micro-particles

Clouds, Fog & Precipitation: dilute aqueous particles **Cells & Organelles**: semi-solid & liquid nano- & micro-particles







## **Bioaerosols & Bioprecipitation**



**DNA & Protein Analysis** 

Fluorescence Spectroscopy & Microscopy

#### High abundance, diversity & fluxes of airborne bacteria & fungi

~1 µg m<sup>-3</sup>, ~10 L<sup>-1</sup>, ~10<sup>2</sup> m<sup>-2</sup> s<sup>-1</sup>, >10<sup>3</sup> species (urban PM)

Cloud condensation & ice nuclei: co-evolution of life & climate ⇒ bioprecipitation cycle

- "Life is in the Air": ~10 ng m<sup>-3</sup> DNA
- $\Rightarrow$  inhalation of ~1 µg/day =
- ~10<sup>8</sup> bacterial genomes/day

Pathogens: permanent challenge ⇒ infectious & allergic diseases

Elbert ACP 2007, Despres BG 2007, Fröhlich PNAS 2009, BG2012, Pöschl Science 2010, Despres Tellus 2012, Pöhlker AMT 2012, Science 2012, Morris GCB 2014



Vegetation

Humans & Animals

## **Pristine Rainforest Aerosol (AMAZE-08)**





Martin ACP 2011, Pöschl Science 2010

#### Characteristic particle types (3-13 March 2008)



## **Rainforest Aerosol Size Distribution**



#### Number

Submicron ~ 200 cm<sup>-3</sup> ~ 85% SOA

**Supermicron** ~ 0.2 cm<sup>-3</sup> ~ 80% PBA

#### Mass

**Submicron** ~ 0.5 μg m<sup>-3</sup> ~ 85% SOA

**Supermicron** ~ 1.5 μg m<sup>-3</sup> ~ 85% PBA

Pöschl Science 2010

## **Biogeochemical Reactor I**



Cloud Cond. Nuclei (CCN):

~10<sup>2</sup> cm<sup>-3</sup>, <1 µm, mostly secondary organic aerosol (SOA) from biogenic VOC

#### Ice Nuclei (IN):

~10<sup>-2</sup> cm<sup>-3</sup>,  $\geq$  1 µm, mostly primary biological aerosol (PBA)

**SOA:** formation pathways & kinetics ?

**PBA:** diversity, sources & water interactions ?

#### **Bioprecipitation Cycle:**

pristine tropical vs. polluted mid-latitude air ?

Pöschl Science 2010

## **SOA Composition**



STXM-NEXAFS: 3 SOA classes – acid (terpene), hydroxy (isoprene), mix

potassium (K) in almost all SOA particles

Pöhlker Science 2012

## **Potassium Salt Seeds**



Small potassium-rich salt particles with low organic content
Dilution of primary potassium content upon SOA particle growth

Pöhlker Science 2012

## **Biogeochemical Reactor II**



CCN & IN numbers directly controlled by primary emissions ?

Pöhlker Science 2012

## MPIC Semi-Arid Forest (BEACHON-Rombas 2011)



UVAPS & Humidity Measurements (Manitou Forest, Colorado, USA, August 2011):
strong bursts of bioaerosol concentrations during & after rain (FBAP)
intial release of bacteria (~2 μm) & subsequent growth of fungi (~4 μm) ? Huffman ACPD 2013

## **Biological Ice Nuclei**



#### **FBAP Bursts during Rain:**

- → strong increase of FBAP & IN at -15°C at 2-6 µm (bacteria & fungal spores?)
- → strong increase & correlation of FBAP & IN at -25°C
- → identification of new fungal IN (fluoresc.):



Huffman ACPD 2013



## **Bioprecipitation Cycle**



Vegetation

Humans & Animals

#### Life is in the air and it does interact with precipitation.

Sands J Hung Met Serv 1982, Christner Science 2008, Pöschl Science 2010, Pöhlker Science 2012, Huffman ACPD 2013, Morris 2013

#### Introduction & Motivation

- bioaerosol cycling & effects
- rainforest aerosol composition & sources

#### **CCN Activation in Pristine vs. Polluted Air**

- characteristic parameters & regimes
- aerosol cloud droplet closure



## **CCN Measurement & Prediction**



## **Prediction & Regimes of CCN Activation**



Reutter ACP 2009

Hygroscopicity Parameter, κ

**Pristine:** < 1000 cm-3, pristine aereosol SD,  $\kappa = 0.15$ , Pöschl et al. Science 2010



Polluted: up to 100,000 cm-3, biomass burning aerosol SD,  $\kappa = 0.3$ , Reutter et al., ACP 2009



## **Aerosol - Cloud Droplet Closure**





#### **Biogenic Aerosols (PBAP & BSOA):** altitude profile of number, size & composition

- Filter samples & STXM analysis
- DMPS, AMS, SP2, ...
- CCN & IN activity
- FBAP (from FINCH)

## Aerosol - Cloud Closure:

#### **CDN/IPN vs. CCN/IN properties**

- CCN vs CN vs. CDN (BSOA vs. others)?
- IN vs. CN vs. IPN (PBAP vs. others)?
- inference of S\_peak
- Cloud Parcel, ATHAM, BRAMS, WRF-CHEM ...

#### - connections to ATTO science team ...

## **Global Distribution of Kappa**



## **Cloud Condensation Nuclei (CCN)**



**Effective hygroscopicity parameter**  $\kappa$ summarizes thermodynamic properties & relates particle diameter to supersaturation required for activation ( $\kappa \approx 0$ -1)

Molecular interaction parameters & hygroscopicity distribution  $h(\kappa, D_d)$ : non-idealities & particle mixing state

Rose ACP 2008,2010,2011, Gunthe ACP 2009, Pöschl FIAS 2009, Su ACP 2010, Mikhailov 2011

