RAMMER NETWORK
OBSERVATIONS DURING
SUMMER 2011/2012

A. C. V. Saraiva; O. Pinto Jr.; G. S. Zepka; L. Z. S. Campos; L.
Antunes; J. Alves; S. A. M. Luz; T. S. Buzato
Introduction

- The RAMMER project is a small network of 3 cameras installed in São José dos Campos, SP, Brazil, that operate during the summer of 2011/2012;
- Two sensors were fully automated and working since November, 2011. The third sensor operated manually during part of the campaign;
- The main objectives include:
 - Observation of lightning flashes simultaneously in order to reconstruct the lightning channel in 3D;
 - Acquiring a significant amount of flashes per thunderstorm to make reliable statistics of lightning characteristics;
 - Estimate continuously the Detection Efficiency of BrasilDAT network.
- This work is an initial report on the first campaign of the RAMMER network;
- During this summer, this project participate on the CHUVA campaign held in São José dos Campos and São Paulo.
Equipment

- High-speed camera;
- Computer;
- GPS;
- Lightning sensor;
- Housing;
- Control circuit;
- Control software.
Equipment

RAMMER site 1

RAMMER site 2
RAMMER sites
Campaign of 2011/2012

- The first sensor became operational in the end of November 2011;
- The second sensor was installed in December 2011;
- A third sensor was not officially installed but operated for isolated events during the summer;
- Some problems with the sensors prevented the continuous observation;
Statistics of RAMMER 1 sensor

<table>
<thead>
<tr>
<th>Day</th>
<th># of movies</th>
<th># of CG flashes recorded</th>
<th>Daily ED</th>
<th>Thunderstorm ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/30/11</td>
<td>4</td>
<td>4</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>12/01/11</td>
<td>3</td>
<td>3</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>01/06/12</td>
<td>1</td>
<td>1</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>01/18/12</td>
<td>33</td>
<td>1</td>
<td>3%</td>
<td>-</td>
</tr>
<tr>
<td>01/25/12</td>
<td>14</td>
<td>2</td>
<td>14%</td>
<td>33%</td>
</tr>
<tr>
<td>02/09/12</td>
<td>13</td>
<td>5</td>
<td>39%</td>
<td>100%</td>
</tr>
<tr>
<td>02/10/12</td>
<td>69</td>
<td>13</td>
<td>19%</td>
<td>34%</td>
</tr>
<tr>
<td>02/12/12</td>
<td>32</td>
<td>3</td>
<td>9%</td>
<td>50%</td>
</tr>
<tr>
<td>02/14/12</td>
<td>21</td>
<td>7</td>
<td>33%</td>
<td>100%</td>
</tr>
<tr>
<td>02/17/12</td>
<td>48</td>
<td>5</td>
<td>10%</td>
<td>71%</td>
</tr>
<tr>
<td>02/23/12</td>
<td>25</td>
<td>24</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>02/24/12</td>
<td>6</td>
<td>1</td>
<td>17%</td>
<td>-</td>
</tr>
<tr>
<td>03/02/12</td>
<td>39</td>
<td>35</td>
<td>90%</td>
<td>95%</td>
</tr>
</tbody>
</table>
Thunderstorms development
Thunderstorms development
Statistics of RAMMER 1 sensor

<table>
<thead>
<tr>
<th>Day</th>
<th># of movies</th>
<th># of CG flashes recorded</th>
<th>Daily ED</th>
<th>Thunderstorm ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/30/11</td>
<td>4</td>
<td>4</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>12/01/11</td>
<td>3</td>
<td>3</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>01/06/12</td>
<td>1</td>
<td>1</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>01/18/12</td>
<td>33</td>
<td>1</td>
<td>3%</td>
<td>-</td>
</tr>
<tr>
<td>01/25/12</td>
<td>14</td>
<td>2</td>
<td>14%</td>
<td>33%</td>
</tr>
<tr>
<td>02/09/12</td>
<td>13</td>
<td>5</td>
<td>39%</td>
<td>100%</td>
</tr>
<tr>
<td>02/10/12</td>
<td>69</td>
<td>13</td>
<td>19%</td>
<td>34%</td>
</tr>
<tr>
<td>02/12/12</td>
<td>32</td>
<td>3</td>
<td>9%</td>
<td>50%</td>
</tr>
<tr>
<td>02/14/12</td>
<td>21</td>
<td>7</td>
<td>33%</td>
<td>100%</td>
</tr>
<tr>
<td>02/17/12</td>
<td>48</td>
<td>5</td>
<td>10%</td>
<td>71%</td>
</tr>
<tr>
<td>02/23/12</td>
<td>25</td>
<td>24</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>02/24/12</td>
<td>6</td>
<td>1</td>
<td>17%</td>
<td>-</td>
</tr>
<tr>
<td>03/02/12</td>
<td>39</td>
<td>35</td>
<td>90%</td>
<td>95%</td>
</tr>
</tbody>
</table>
Possible analysis with high-speed cameras

- **Standalone:**
 - Study of visible lightning characteristics (multiplicity, flash duration, interstroke intervals);
 - Continuing currents;

- **Alongside with other equipment:**
 - Deep analysis on some physical parameters of lighting;
 - Used as ground truth to detection efficiency studies of lightning location systems (LLS);
 - Multiple cameras can be used to also infer the location of strokes and compare to LLS;
 - Study of cloud dynamics responsible for some lightning observations;
 - LLS peak currents x E-fields x cameras;
Current work-in-progress

- Natural bipolar downward flash;
- Study of thunderstorms that produce positive flashes;
- Analysis of the relationship between luminosity of return strokes and peak currents;
- Daily analysis of flash characteristics for selected thunderstorm days.
- Lightning channel reconstruction with multiple camera network;
- Detection efficiency calculations for BrasilDAT and RINDAT.
Bipolar case study

Case 1 – 03/13/2012 – 20:10:51 UT

Case 2 – 03/13/2012 – 20:13:46 UT
Bipolar case study

Second stroke sequence

Stroke time: 20:10:51.112
Peak current: -2 kA

Flash sequence

Stroke time: 20:10:50.943
Peak current: 15 kA
Case 1: 02/19/2013
- Number of flashes: 78
- % of single stroke flashes: 21.8%
- Mean multiplicity: 4.5
- % of multiple ground contact flashes: 52.46%

Case 2: 03/06/2013
- Number of flashes: 120
- % of single stroke flashes: 16.1%
- Mean multiplicity: 5.15
- % of multiple ground contact flashes: 49.49%
Simultaneously recordings

Case from 03/12/2012. The stroke time was 18:07:52.346 UTC

RAMMER 2 data

RAMMER 1 data
The CHUVA campaign was held in São Paulo and São José dos Campos (CHUVA-GLM-Vale do Paraíba) during the summer season of 2011/2012;

Several instruments were installed in the region, like: LMA (Lightning Mapping Array) stations, LINET network, WeatherBug network, Vaisala Network, X-Band Polarimetric Radar, Field-Mils among others;

All these techniques together will form a unique database of lightning information;
Discussions

- This work presented some information about the first campaign of the RAMMER network;
- Some bugs prevented the network to work at full capacity;
- The unusual summer also played a role in the small number of flashes recorded;
- Thunderstorm movements and characteristics can cause camera recordings without lightning in front of it;
Discussions

- Even with a small number of events recorded we had a fair amount of lightning recorded during the summer. The exact number will be known after the data processing, but we expect something like 300 flashes for this first campaign;

- We were able also to had some flashes recorded with multiple cameras and they will be used in the flash 3D reconstruction algorithm;

- The presence of CHUVA instruments added a unique dataset of lightning measurements that will improve the results that will be presented in future analyses;

- The preparation for next campaign already started and all bugs will be evaluated carefully and solved.