Understanding 3D effects in polarized observations with the ground-based ADMIRARI radiometer during the CHUVA campaign

Alessandro Battaglia, Pablo Saavedra, Carlos Augusto Morales and Clemens Simmer

A. Battaglia, Department of Physics and Astronomy, University of Leicester, University Road, LE1 7RH Leicester, United Kingdom (a.battaglia@le.ac.uk)

P. Saavedra, Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany (pablosaa@uni-bonn.de)

C. A. Morales, Instituto de Astronomia, Geofisica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, Brazil (morales@model.iag.usp.br)

C. Simmer, Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany (csimmer@uni-bonn.de)
Abstract. Measurements of down-welling microwave radiation from rain-
ing clouds performed with the ADMIRARI radiometer at 10.7-21-36.5 GHz
during the Global Precipitation Measurement Ground Validation CHUVA
campaign held in Brazil, March 2010, represent a unique test-bed for under-
standing three-dimensional effects in microwave radiative transfer processes.
While the necessity of accounting for geometric effects is trivial given the slant
observation geometry (ADMIRARI was pointing at a fixed 30° elevation an-
gle), the polarization signal (i.e. the difference between the vertical and hor-
zontal brightness temperatures) shows ubiquity of positive values both
at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This
signature is a genuine and unique microwave signature of radiation side leak-
age which cannot be explained in a one-dimensional radiative transfer frame
but necessitates the inclusion of three-dimensional scattering effects. We demon-
strate these effects and interdependencies by analyzing two campaign case
studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic
media like precipitating clouds.
1. Introduction

Although three-dimensional (3D) radiative transfer (RT) effects within cloudy atmospheres have been theoretically quantified via sophisticated radiative transfer tools (e.g. Marshak and Davis [2005]), their observation has been always extremely elusive. The main reason is the enormous difficulty to perform closure studies with a full characterization of the radiatively important 3D-structure of a cloud. Hence observational studies towards 3D effects have been statistical in nature, e.g. by analyzing satellite measurements in ways that illustrate dependencies that are inconsistent with the assumption of one-dimensional (1D) RT. Emphasis has always been put on shortwave solar radiances particularly for the understanding of the relationship between cloud albedo, cloud microphysics and cloud structure, which is of great interest for studies of equilibrium climate and climate change. This research avenue has been boosted by the rising number of satellites with increasingly higher spectral and spatial resolution and more viewing angles (e.g. the Aerosol Polarimetric Sensor on board the up-coming GLORY mission, Mishchenko et al. [2007]).

In this paper, we focus on 3D RT in the microwave region with a specific interest in precipitation, which is known to have a high spatio-temporal heterogeneity. The latter represents a caveat for all microwave-based remote sensing techniques; already in the late 70s Weinman and Davies [1978] used both analytical and Monte Carlo 3D RT models to quantify the so-called non-uniform beam filling (NUBF) effect in passive microwave retrievals of rain rate. The beam-filling effect arises from the assumption of homogeneous rainfall across the field of view (FOV), coupled with the non-linear, concave-downward response of brightness temperatures (T_Bs) to rainfall rate. The effect depends mainly on
the footprint dimension, the microwave frequency under investigation, the cloud type and shape, and in all cases increases with inhomogeneity and mean LWP or rain-rate ([Kummerow, 1998; Lafont and Guillimet, 2004]). NUBF was found to be the main source of error in retrieved rainfall rate from space-borne microwave radiometers; an uncertainty of a factor of 2 can exist in the mean rain-rate for a given brightness temperature ([Weinman and Davies, 1978; Lafont and Guillimet, 2004]).

The presence of inhomogeneity in the instrument FOV—and more generally the 3D structure of the system under observation—does not preclude the use of 1D radiative transfer approaches. In fact the plane parallel assumption does not require homogeneity at distances arbitrarily far from the FOV of the sensing instrument. For instance, for pure absorbing atmospheres and Fresnel-like surfaces, the radiation sensed by space-borne passive microwave radiometers originates exclusively from the FOV projected slant tube. In these cases 1D independent pixel approximations work very well, with the simple expedient of taking into account geometric effects in case of off-nadir looking radiometers (Battaglia et al. [2005]). In the slant-path (SP) approximation [Bauer et al., 1998; Roberti et al., 1994] the structure is horizontally homogeneous while the vertical profile is reconstructed by using the slant profile defined by the ray traced from the sensor upward to the TOA for ground-based or downward to the surface and then reflected upward for space-borne radiometers.

In presence of scattering media and/or diffusive surfaces, due to the re-directing of radiation by diffusion events, radiation sensed by the radiometer may not be generated within the slant tube of observation. In this case the horizontal displacement of radiation in directions perpendicular to the viewing direction produces scattering effects, which
are more subtle and difficult to treat. The study of these effects has matured with the
simultaneous development of 3D RT codes, mainly based on Monte Carlo techniques
(Roberti et al. [1994]; Liu et al. [1996]; Roberti and Kummerow [1999]).

Kummerow [1998]; Roberti and Kummerow [1999] noticed that, compared to the correct
3D simulations, the 1D SP modeling introduces mainly random errors and only minor bias
effects. In fact in 1D SP approximations, radiation remains trapped by construction in
the slant tube: no contribution from outside the tube is allowed possibly resulting in
non-physical variations for contiguous pixels. A 3D radiation field can be depicted as
a smoothed version of the field constructed from many 1D radiation simulations. The
computed $\Delta T_B = T_B[3D] - T_B[1DSP]$ leads to large differences ($> 10 K$) for TRMM
Microwave Imager resolutions only at the highest frequency (85.5 GHz, 5 km resolution).
Areas with positive ΔT_B are generally followed immediately by areas with negative ΔT_B,
thus confirming the overall cancelation of the bias.

Only recently attention has turned toward studies involving 3D effects in the polariza-
tion signal. This has been fostered by the introduction of full polarimetry in MonteCarlo
RT codes (Battaglia and Mantovani [2005]; Davis et al. [2005]; Battaglia et al. [2007]),
which are now capable of treating dichroic media. While spherical particles are known to
produce small polarization signals at microwave frequencies (Liu and Simmer [1996]), prefer-
entially oriented non-spherical particles are potentially more effective in that respect.

Two main scenarios have been studied so far:

1. Davis et al. [2007] accurately simulated observations of 3D mid-latitude preferen-
tially oriented cirrus clouds (synthetically generated from 2D observations of the
Chilbolton radar at a resolution resolution of approximately 780m by 780m
by 110 m) for a variety of viewing geometries corresponding to operational (Advanced Microwave Sounding Unit AMSU-B, Earth Observing System - Microwave Limb Sounder EOS-MLS) and proposed (Cloud Ice Water Sub-millimetre Imaging Radiometer CIWSIR) high frequency space-borne radiometers. For the AMSU-B 190.3 GHz and the CIWSIR 334.65 and 664 GHz chennels, they demonstrated the significance of polarisation effects for non-spherical particles, and also of beam-filling effects with regard both to intensity and to polarisation. They found a good agreement between 3D and the independent pixel approximation (IPA), which suggests that for slant viewing instruments [with footprint radii of 5.5 km (CIWSIR) or 16 km (AMSU-B)] and low tangent height limb sounding, 3D scattering RT effects do not have a significant impact and show unequivocal signatures as well. Their study is purely notional; no (statistical) analysis with observations has been performed.

2. Battaglia et al. [2006] studied 3D RT effects in ground-based low microwave frequency (10-36 GHz) radiometric observations of rain. As theoretically proposed by Czekala and Simmer [1998] and confirmed by Czekala et al. [2001a], larger drops exhibit negative polarization differences \(PD \equiv T_B^V - T_B^H \) in the down-welling microwave radiation which can be exploited in discriminating between cloud and rain liquid water [Czekala et al., 2001b]. The basis for this information is the assumption of a well defined equilibrium shape of raindrops and their orientation distribution in absence of turbulence and wind shear (e.g. Andsager et al. [1999]). Battaglia et al. [2006] demonstrated that 3D effects tend to modify the distribution of observations in the \(T_B - PD \) plane, which exhibits a parabolic shape with a negative PD minimum at intermediate \(T_B \)s (e.g. see Figs. 2-3 in Czekala et al. [2001a] or Fig. 4 in Battaglia et al. [2010]). 3D effects may alter
the amplitude of the minimum PD and the general slope in the ascending and descending part of the curve. More subtle effects like non-zero PDs at nadir and also non-zero third Stokes vector components may occur. Battaglia et al. [2006] concluded that a 1D SP approximation is generally insufficient for scenarios with high rain rates; here the PD signal is the most affected.

To further advance this second research avenue, ADMIRARI (ADvanced MICrowave RA-diometer for Rain Identification) was developed and deployed in different field campaigns [Battaglia et al., 2009, 2010]. A Bayesian scheme including 3D RT simulations designed for the ADMIRARI suite of measurements, retrieves simultaneously water vapor, rain and cloud liquid water paths for the slant volume under observation.

The goal of this study is to deepen our understanding of 3D RT effects in passive low-frequency and polarized ground-based observations of microwaves signal. In particular we aim at validating the conjectures and predictions proposed by notional RT studies with field measurements. Thanks to their vicinity to the target which results in narrow FOV, ground based radiometry has a huge potential in that respect because polarization features produced by 3D structures can be observed without having to contend with NUBF effects, which tend to smooth them out. The March 2010 Global Precipitation Measurement Ground Validation CHUVA campaign represents a perfect test-bed given the distinct structures of the observed typical precipitating systems and the measurement setup (Sect. 2). Two situations are investigated in details (Sect. 3), which provide excellent examples of pristine 3D RT effects (Sect. 4). Unique scattering 3D RT features are identified in the observations and explained by comparing 3D backward Monte Carlo and 1D SP RT simulations (Sect. 5). Conclusions are drawn in Sect. 6.
2. The CHUVA Field Campaign

As part of the proposal entitled “Cloud processes of the main precipitation systems in Brazil: a contribution to cloud resolving modeling and to the GPM (Global Precipitation Measurement)” - CHUVA, several field campaigns will take place in Brazil (during 2010-2013) to support the Brazilian activities of the GPM-Brazil program towards the cooperation between the Brazilian Space Agency - AEB and NASA Ground Validation program (GPM/GV). The first campaign, PRE-CHUVA took place at the Brazilian Launching Center of Alcântara (CLA) in the Northeastern Brazil from March 1st to 25th, 2010 (http://gpmchuva.cptec.inpe.br). According to CHUVA objectives, in this field experiment the measurements were concentrated to depict the warm rain process and their transition to the vertically developed tropical precipitating systems. During the campaign, AEB, the Brazilian Air Force at CLA, the Space Research Institute (INPE), University of São Paulo, University of Bonn and NASA provided several instruments to support the PRE-CHUVA campaign. Fig. 1 provides the location of the sensors deployed for this field experiment: X Doppler Dual Polarization weather radar, automatic weather stations, radiosondes, disdrometers (JOSS, Parsivel and Thiess), rain gauges, lidar, Radiometrics MP3000 Microwave Radiometer and ADMIRARI radiometer. For the present study, we focus on measurements taken only by ADMIRARI and the X-Band weather radar.

As depicted in Fig. 1, ADMIRARI was located at the Delta village (Lat. 2° 23.16’S, Lon. 44° 22.8’W, Site2) and it was aligned at Southeast of the weather radar (Lat. 2° 19.5’ S, Lon. 44° 25.2’W, site 1) at 7.65 km. Along this radial several ancillary observations were taken in the Airport (Lat. 2° 22.6’S, Lon. 44° 24’W, Site 3). For
the campaign, the radar strategy was repeated every 10 minutes and it was composed of one volume scan with 12 elevations and one range height indicator (RHI) along the ADMIRARI direction. The volume scans were set to start at 00, 10, 20, 30, 40 and 50 minutes every hour, while the RHI at 06, 16, 26, 36, 46, 56 minutes. The radar was set to collect radar reflectivity (Z), Doppler velocity and spectral width, differential reflectivity (Z_{DR}), differential phase (Φ_{DP}) and correlation between horizontal and vertical polarization (ρ_{HV}) with gate width of 125 meters. The RHI scan strategy varied from 0 to 90° every 0.5° elevation steps. ADMIRARI was set to observe at a constant 30° elevation angle in the direction towards the weather radar - Site 1. ADMIRARI measurements comprise \(T_B \)s at vertical and horizontal polarization at its three frequencies (10.7-21.0-36.5 GHz); the \(T_B \)s were complemented by slant reflectivity profiles observed at 24.1 GHz by a Micro Rain Radar (MRR, see e.g. Peters et al. [2002]) at 30° elevation angle with 300 m range resolution and 31 bins. In addition rain occurrence over the radiometer position from a rain sensor, ambient temperature and pressure as well as internal receiver and stability temperatures were recorded for quality control.

During the Pre-CHUVA, three marked weather regimes could be found based on the radar and gauge measurements: 1) during the first two weeks dry weather conditions without significant precipitation prevailed; 2) in the third week, isolated and short warm rain cells were observed; 3) finally, the last week was marked by the rainiest period that included several warm rain events and deep convective storms with a wide range of intensity and duration. As most of these raining systems are small and convective, a large variability on the rain gauge and disdrometer accumulation was found at the three
sites, i.e., 250 mm, 200 mm and 270 mm rain accumulation for 13, 9 and 9 days at Site 1 (Radar), Site 2 (ADMIRARI) and Site 3 (CLA), respectively.

Fig. 2 summarizes all ADMIRARI measurements collected during the CHUVA campaign in the $T_B - PD$ plane. Two features are striking: a) Extremely large T_Bs at 10.7 GHz (left panel) hint at extreme events with high optical thicknesses characteristic for tropical regions (including an unique event reaching saturation level in the radiometric signal, a feature observed at this frequency for the first time) ; b) in the region with T_Bs close to saturation (i.e. close to ambient temperature) positive PDs are ubiquitous both at 36.5 (right panel) and at 21.0 GHz (not shown). These features will be discussed in detail in the following sections.

3. Case studies

3.1. Scenario from 19th March

The first case analyzed is a 6 minute-long rain shower, which occurred on the 19th of March 2010 around 20:45 UTC. The ADMIRARI observations (i.e. MRR slant reflectivity profiles, T_Bs and PDs at 10-21-36 GHz) are depicted in Fig. 3. This case represents typical situations encountered during the campaign: rain bearing cells were forming over the ocean, were advected in-land, and passed ADMIRARI. ADMIRARI was looking roughly orthogonal to the flow direction, with the rain cells coming from the North-East towards the South-West (i.e. roughly following the same line of the airport pad in Fig. 1). The MRR slant reflectivity profiles clearly identifies that this particular event was observed mostly with the radiometer being outside the rain cell; this is corroborated by the rain sensor (gray area in Fig. 3 and Fig. 6) which did not flag rain during the period under consideration. This evolution is also confirmed by the series in the RHIs (Fig. 4). Note
that the rain shaft is not very deep along the line of sight of the radiometer, which partially
explains why only the highest frequency is reaching complete saturation, and only for a
very short period. Compared to the MRR profiles the onset of precipitation appears to be
anticipated in the ADMIRARI measurements, with all PDs being negative from 20:43:54
onwards. Looking at the plane position indicator (PPI) radar image (bottom panels in
Fig. 4), this seems to be caused by a more distant rain cell (beyond the MRR ranging
distance) which was passing earlier through the ADMIRARI line of sight (circled in red
in the bottom left panel).

The time evolution of the ADMIRARI observed variables in the $T_B - PD$ plane (Fig. 5)
showcases a recurrent pattern during the CHUVA campaign. Apart from variations which
can be related to the time evolution of the system itself the 10 GHz time series is as
expected: in the beginning both the T_B (the absolute PD) values gradually increase with
the rain cell entering the FOV up to 125 (13) K and then gradually decrease when the
rain cell exits the FOV. Note that on the exit path PDs with similar T_Bs as during the
entering path are characterized by lower absolute values; this is most probably caused by
the fact that the ADMIRARI FOV is intercepting an increasing cloud component (e.g.
compare the FOVs in the two panels of Fig. 13) which reduces the PDs, because of the
spherical shapes of cloud droplets. The 36.5 GHz pattern is completely different with T_B
reaching the highest values of 265 K (still 35 K below the ambient temperature of 27° C)
after passing a minimum PD of -6 K around 170 K. From saturation on, the T_Bs go back
to the clear-sky value at 85 K with PDs straddling around 0 K. The 21 GHz observations
have an intermediate behavior.
The observed 36.5 GHz signal evolution is totally unexpected in a pure 1D world: all the observation pairs from 20:45 onwards do not fit Fig. 3 in Czekala [1998] or Fig. 4 in Battaglia et al. [2010], which are both based on 1D simulations without slant-path approximations. The series of 36.5 GHz observations with decreasing T_Bs and zero P_Ds would be associated with a profile only containing cloud droplets, with lower and lower contents with time. But this is obviously not the case because the 10 GHz signal shows significant negative P_Ds, and the MRR observed reflectivities are well above the noise level (due to their low signal cloud droplets are well below the noise level of such an instrument).

The fact that all our observations are performed at 30° introduced significant geometric effects, but this will only partially explain the observed feature for this instance.

3.2. Scenario from 20th March

The observations from the 20th of March indicate an extreme scenario with a fist period of observation made from outside the rain cell (until 10:07 UTC) and then from inside the rain cell as depicted by the rain sensor in Fig. 6. The convective cells under observation were much more intense and larger than those from the previous day as clearly shown by the RHI radar observations (Fig 7); the event also lasted much longer (around 45 minutes). For most of the time the 21.0 and 36.5 GHz T_Bs were fully saturated (around 18 min saturation), even the 10 GHz T_Bs reached extraordinary high values up to 280 K (see Fig. 6). At certain instants also the MRR signal is fully attenuated by the rain cell. A 21 GHz T_B around 180 (250) K corresponds approximately to a slant optical thickness of 1 (2); assuming the same for the 24.1 GHz MRR frequency, this corresponds to a 8.5 (17) dB two-way attenuation. Therefore for instants when the 21 GHz T_Bs exceed 250 K
the MRR backscattering signal coming from the more distant precipitating volume will be most likely lost.

The time evolution of the event in the \(PD - T_B \) plane (Fig. 8) shows a remarkable variability of the \(PDs \) at saturated \(T_Bs \) both at 21.0 and 36.5 GHz with positive polarization values up to +4 K and +2.1, K respectively. As discussed hereafter, these features represent a conundrum which can only be explained via 3D RT.

4. 3D polarized simulations of precipitating clouds

To understand some of the features observed by ADMIRARI during CHUVA we resort to a very simple box cloud scenario following ideas similar to Battaglia et al. [2006] (see Fig. 9). To resemble the situation encountered on the 20th March, 2010, a \(L_{cx} \times L_{al} = 4 \times 4 = 16 \) km\(^2\) box with liquid water paths of 20.0 and 3.6 kg/m\(^2\) of the rain and cloud component, respectively, assumed with a cloud base located around 2.5 km and a rain column reaching up to 4 km (similar to that shown later on in the top left panel of Fig. 15). This profile matches the radar observations around 10:06 (mid top panel in Fig. 7). Note that later on the cell developed some hail as evident from the presence of flare echoes at 10:24 and 10:30.

In the lowest levels with rain content of the order of 3 g/m\(^3\) (corresponding to 13.8 kg/m\(^2\) in the slant path), the extinction coefficients are around 0.5, 2 and 5 km\(^{-1}\) for the three ADMIRARI frequencies respectively, with single scattering albedos ranging from 0.36 to 0.53. \(T_Bs \) and \(PDs \) are simulated (Fig. 10, only 10.7 and 36.5 GHz) as sensed by an ADMIRARI-like radiometer (i.e. with a 3dB beam-width of 6.5\(^\circ\)) located at different positions inside and outside the rain shaft with an elevation angle of 30\(^\circ\). The color coding in Fig. 10 quantifies the simulated measurements looking “southward”, i.e. along...
the negative y-axis. In the following the position of the radiometer will be identified by
two coordinates: a cross and an along ground-projected line-of-sight (GP-LOS) distance.
In such a reference frame the rain shaft is indicated by the thick black rectangle with
corners located at (0,0),(0,4),(-4,4),(-4 km,0 km) in the bottom left panel; because of the
symmetry of the problem all plots are cut at a cross LOS distance equal 2 km, i.e. in the
middle of the cloud.

There are obviously border/edge effects due to the finite antenna beam-width of the
radiometer, which causes the spill-out of rain-shaft generated radiation in the region with
negative cross GP-LOS distances as well. The effect is roughly restricted to the conical
area identified by the dashed thick black lines, with the conical vertex angle being half
the radiometer 3dB beam-width. For observation points within such areas, the observed
volume will be non-uniformly filled. An extreme scenario is achieved when half of the
beam is filled by the rain shaft and half by clear sky (cross GP-LOS distance equal to 0
km). If the radiometer is located to the North of the rain shaft and looking towards the
shaft at an along GP-LOS distance of around 4 km the region affected by NUBF is about
0.75-km wide. This corresponds roughly to three minutes for a precipitation cell moving
at 20 km/h in the direction orthogonal to the radiometer viewing direction. In the NUBF-
affected region the radiation field is clearly characterized by a strong gradient. Certainly
the situation is extreme due to the unrealistic sharp edge of the rain shaft assumed, but
it is indicative of an important pitfall of the measurements, as we see later.

To have a deeper understanding of the RT, we restrict our analysis to a cross GP-
LOS distance equal to 2 km along the double array dash-dotted line depicted in the left
bottom panel of Fig. 10. thus ADMIRARI “looks” towards the centre of the rain shaft
and we vary the distance from the rain shaft (Fig. 11). With this selection we avoid
the NUBF affected area so that “lateral” NUBF effects do not play any role for these
radiometer viewing positions. The continuous lines in Fig. 11 indicate the ADMIRARI
T_B and PDs including all scattering order contributions via a full 3D simulation (backward
MonteCarlo, Battaglia et al. [2007]). The black diamond line shows the corresponding
measurements simulated for a radiometer with a pencil beam via a full 3D simulation
(backward MonteCarlo, Battaglia et al. [2007]). Thus we can study resolution effects. The
dashed red line provides also the results for a radiometer with a pencil beam but obtained
from a slant-path 1D simulation (adapted RT4 code, Evans and Stephens [1991]). We can
draw the following observations.

- At 36.5 GHz (10.7 GHz), in the region with the highest T_Bs, half (10%) \textbf{the total}
radiation has encountered at least one scattering event (see the difference
between black continuous and red diamond lines in the left panels). Therefore
at the higher frequencies the scattered field is expected to largely affect the radiometer
signal; thus 3D scattering effects are likely to occur.

- The emission (i.e. zero-order of scattering) term is very different at the three frequen-
cies because of the different down-welling atmospheric emission (see Eqs 1-2 in Battaglia
et al. [2006] for details). $PD^{[0]}$ (diamond red lines in the right panels) is the result of two
processes: 1) the propagation of radiation in rain that is vertically polarizing due to the
increased absorption of horizontally polarized radiation and 2) the emission of radiation,
which is preferentially horizontally polarized. At 21 and 36.5 GHz, due to the presence
of a considerable background emission from behind the rain shaft, the propagation effect
tends to overcome the emission resulting in positive $PD^{[0]}$s for all optical thicknesses.
Viceversa, at 10 GHz, this happens only for large optical thicknesses while for thin media $PD^{[0]}$ is negative.

- The impact of the higher orders of scattering on PDs is much larger than the impact on TBs. For instance, at 10 GHz, the PDs may be affected for more than 50% by the radiation scattered within the observed volume (top right panel in Fig. 11, compare red diamond and black continuous lines).

- The total signal simulated for an ADMIRARI 3dB-beamwidth (6.5 degrees) significantly differs from the pencil beam only when the along GP-LOS distance from the rain-shaft exceeds 4 km (compare the black continuous and diamond black dash-dotted lines in the right panels). This is due to the NUBF which is responding to the vertical variability of the precipitating cloud. The overall effect is equivalent to spatially smoothing out the PD and TB fields obtained in the pencil beam configuration along the viewing direction.

- In all situations the 1D-pencil beam shows smaller (larger) TBs when the radiometer is well within (far outside) the rain shaft. The difference is almost imperceptible at 10.7 GHz but can reach values as high as 15-20 K at 36.5 GHz.

- There is an extended region outside the rain shaft with significantly positive PDs (larger than 2K) at 36.5 (and at 21.0 GHz, not shown). The 1D-pencil beam cannot reproduce this feature, and PDs are even slightly below zero in the same region in a 1D approximation. While at 10.7 GHz PDs are always negative and can also achieve extremely negative values when the radiometer is located either within or outside of the rain shaft (feature well depicted in Fig. 6 and confirmed for the whole set of observations in Fig. 2, left panel), there is only a confined region at 36.5 GHz where large negative PDs are
reached (bottom right panel in Fig. 10). This situation is achieved when the radiometer is looking from underneath the rain shaft, having a small portion of the precipitating cell in the FOV (around one optical thickness). In that region 3D simulations generally favor more negative \(PD \) values than 1D-SP.

5. Discussion

5.1. Anisotropic Scattering Effects

The three last observations described above deserve further discussion. What is the fundamental cause of the difference between 1D-SP and 3D radiative transfer? A better insight is provided by analyzing the contribution of the different orders of scattering to the signal. The zero order of scattering term (i.e. the emission term, red diamonds in Fig. 11) is perfectly accounted for by a 1D-SP approximation. These differences must result from higher order of scattering terms. As visible in the right panel of Fig. 11 the structure of the \(PD \) signal is driven by the first order of scattering. For scenarios involving horizontally oriented flattened raindrops the first order of scattering tends to produce negative \(PDs \) (blue squares). Hereafter we generalize the theoretical argument proposed in Battaglia and Simmer [2007] (their Eq. 17-21): at the surface \((z = 0) \) the \(j\)-th order of the down-welling \(T_B \) sensed at a given direction \((\mu_r, \phi_r) \) is given by:

\[
\begin{align*}
T_V^{[j]}(\mu_r, \phi_r) & = \left[\int d\Omega_i e^{-r_{sl}^V(\mu_r, \phi_r, z')} \left\{ \mathcal{J}_V^{[j-1]}(\mu_r, z') \right\}
ight. \\
T_H^{[j]}(\mu_r, \phi_r) & = \left[\int d\Omega_i e^{-r_{sl}^H(\mu_r, \phi_r, z')} \left\{ \mathcal{J}_H^{[j-1]}(\mu_r, z') \right\}
ight.
\end{align*}
\]

where \(Z \) is the ensemble-averaged phase matrix (whose elements are expressed in the H-V basis). The outer integral is performed over the slant volume and accounts for the propagation effect, i.e. the larger H-extinction of the medium, which tends to produce V-polarized radiation (positive \(PDs \)). The inner integral accounts for the polarization effect of the scattering from all possible incoming directions \((\mu_i, \phi_i)\) into the radiometer.
viewing direction \((\mu_r, \phi_r)\). Note that with preferentially oriented azimuthally-symmetric distributed hydrometeors the phase matrix depends only on the relative azimuth difference \(\Delta \phi = \phi_i - \phi_r\). For the polarization difference at scattering order \(j\) we can write:

\[
PD[j](\mu_r, \phi_r) \propto \langle J_v^{[j-1]} \rangle_{sl} - \langle J_h^{[j-1]} \rangle_{sl} \tag{2}
\]

where the brackets indicates an averaging along the slant volume. Reverting to the linear basis \([T \equiv 0.5(T_V + T_H), PD \equiv T_V - T_H]\) the contribution of the first order of scattering to polarization will be:

\[
PD[1](\mu_r, \phi_r) \propto \int \left[2Z_{21}(\mu_i, \mu_r, \Delta \phi) T_V^{[0]}(\mu_i, \phi_i) + Z_{22}(\mu_i, \mu_r, \Delta \phi) PD^{[0]}(\mu_i, \phi_i) \right] d\Omega_i \tag{3}
\]

In the specific CHUVA set-up \(\mu_r = -0.5\) and given the amplitude of \(T_V^{[0]}\) and \(PD^{[0]}\) and the behavior of \(Z_{21}\) and \(Z_{22}\) (not shown) the first term within the integral is dominant. Thus it is worthy to analyze the dependence of the phase matrix scattering element \(Z_{21}\) on the incoming direction \(\left(\theta_{in} = \arccos(\mu_i)\right)\) and the relative azimuth difference when \(\mu_r = -0.5\).

The left panel in Fig. 12 depicts a typical behavior for \(Z_{21}\) at 36.5 GHz (but the same is found at the other ADMIRARI frequencies with large horizontally oriented raindrops). The azimuth dependence of the phase matrix elements is the results of two effects: 1) the dependence of the scattering angle on \(\Delta \phi\) (with the related dependence of polarization on the scattering angle); 2) the rotation needed to relate the Stokes parameters of the incident and scattered beams relative to their meridional planes (details in Ch. 1 Mishchenko et al. [2000]) which, for instance, accounts for the azimuthal dependence at \(\theta_{in} = 0^\circ, 180^\circ\) in Fig. 12. The right panel shows the same element azimuthally averaged, i.e. the phase
matrix element used in a 1D approximation where there is no azimuth dependence of the radiation field.

The major differences between 3D and 1D-SP are found when the radiometer is located immediately underneath the rain shaft and when the radiometer is outside of the rain shaft. The two situations are illustrated in the two panels of Fig. 13.

The first configuration (top panel of Fig. 13) is representative of the region I (along GP-LOS distance from the rain shaft between -4 and -3 km, i.e. inside the rain shaft in Fig. 11). In this case the radiometer is only looking through rain (the cloud base is at 3 km) and, even at 36.5 GHz, the signal is not fully saturated. Very negative values for polarization are reached at 36.5 GHz in the 3D simulation. The 1D-SP approximation is producing lower T_Bs and higher P_Ds. The 1D RT is run on a 1D domain, which is derived by extending horizontally the domain intercepted by the slant ADMIRARI volume (dash-dotted red line rectangle). Therefore, while the radiation emitted within the slant volume is perfectly accounted for, the scattered radiation is not. Let’s consider here the radiation sensed by the radiometer scattered once only, and within the ADMIRARI FOV.

The 1D-approximation introduces fictitious scattering events like those illustrated with the red dash-dotted arrows, i.e. corresponding to radiation emitted from outside the sides of the box and emitted downward (side leakages, positive contribution). Viceversa the 1D-approximation is missing the radiation coming from the upper part of the box (blue region), e.g. the contributions illustrated with the blue dashed lines (leakages from the upper part of the rain shaft, negative contribution). Moreover, part of the radiation coming from the surface is scattered by the rain medium and therefore the first order of scattering component is penalized in favor of higher order of scattering radiation. Overall,
in the 1D approximation, there will be also a loss and a reduction of the radiation traveling
upward within the radiometer volume due to radiation escaping to space (negative leakages
to space). In the 1D approximation the suppression of the up-welling \(I^{[0]} \) coming from
the right side of the rain shaft represents the most relevant source for the reduction of
the negative amplitude of the \(PD \) signal at small optical thickness. In the 3D RT there
is a surplus of radiation coming from angles \(\theta_i \) between 0 and 90° which is scattered back
to the radiometer with \(\Delta \Phi \) around zero. For this range of angles \(Z_{12} \) assumes strongly
negative values (lower left corner in the left panel of Fig. 12), thus explaining the strongly
negative \(PDs \) in the 3D computations. The leakages from the top have also a relevant
effect since they relate to \(Z_{12} \) values with \(\theta_i \) close to 180° but with predominant \(\Delta \Phi \) values
around 180°. To summarize, in the 1D approximation the positive leakages from the side
are smaller than the negative leakages from the top and to space. The overall effect is to
reduce \(T_{BS} \). In addition to that, the 1D approximation tends to favor a radiation field
within the radiometer volume characterized by larger orders of scattering; since radiation
scattered many times tends to be unpolarized this also explains the less negative \(PDs \) in
region I.

Viceversa when the radiometer is in the region II (along GP-LOS distance from the
rain shaft between -0.5 and 8 km in Fig. 11) the leakages from the side play the most
important role. In fact the signal is now close to saturation and the volume effectively
contributing to the radiometer signal is confined to a region at most few hundred of
meters within the rain shaft (so the leakages from the top have no relevance at all). The
situation is reversed from the former case with the 1D approximation \(T_{BS} \)s exceeding the
ones computed accounting for the full 3D structure. The radiation corresponding to these
side leakages is generally characterized by incoming polar angle θ_{in} slightly above 90° and by $\Delta \Phi$ around 180°. The scattering phase function for those angles is significantly negative (center upper part in the left panel of Fig. 12). The absence of such radiation in the real 3D world does produce the positive PDs we actually observe. In a 1D-SP RT on the other hand all the profiles having along GP-LOS distances from the rain shaft in the range [-2.5, 8] km look quite similar and tend to have T_Bs approaching the ones characteristic of a black-body, thus unpolarized.

In summary, there is an azimuthal anisotropy of the radiation field within the radiometer FOV when looking at a rain shaft from outside at slant angles. This anisotropy, in combination with the peculiar structure of the phase function elements of preferentially horizontally oriented raindrops (Z_{21} is predominantly negative when azimuthally averaged), produces the puzzling positive PDs, which are ubiquitous in our CHUVA observations. On the other hand, in a 1D approximation the radiation field has no azimuthal dependence, modifications of the radiation fields caused by horizontal variability cannot be accounted for, and the observed positive PDs cannot be reproduced in a simulation framework because of the behavior of $\langle Z_{21} \rangle_{\Delta \Phi}$. The simultaneous collocated observations tend to exclude other possible explanations of the phenomenon of positive PDs observed at 36.5 GHz. For instance, a huge amount of cloud water with a tiny amount of horizontally oriented raindrops could potentially produce positive polarization at 35 GHz via differential extinction but such scenario is excluded by the simultaneous large negative PDs at 10.6 GHz and by the high MRR reflectivities.
5.2. NUBF effects

An additional complication is added when NUBF situations are present. Let’s reconsider the time evolution shown in Fig. 5. **Again we resort to a simple square rain shaft with sides equal** $L_{al} = 1.5$ km and $L_{cx} = 2$ km **similar to that observed at 20:48 according to the RHI profile (right top panel of Fig. 4) and to the MRR reflectivity (top panel in Fig. 3) to interpret the measurements.** Similarly to Fig. 10, simulated T_Bs and PDs for the 21 and 36.5 GHz channels are shown **in Fig. 14.** The vertical hydrometeor profile here assumed is plotted in the top left panel of Fig. 15. The other three panels depict the change in the $T_B - PD$ plane when moving the radiometer observation point along the radiometer viewing direction with an along GP-LOS distance from the rain shaft from -1.45 km to 10 km, i.e. passing from inside to outside the rain along the line of sight. Different lines correspond to different positions relative to the rain shaft border in the direction orthogonal to the radiometer line of sight, as indicated by the legend. When considering radiometer locations distant from the rain shaft edge (i.e. those labeled with a cross GP-LOS distance equal 1 km) the counterclockwise transition from the point with along GP-LOS distance from the rain shaft equal -1.45 km to that with along GP-LOS distance equal 8 km can be interpreted as if a cell with stationary rain has passed over the radiometer and has moved away along the line of sight of the radiometer. Such patterns (black lines in Fig. 15) qualitatively resemble the temporal evolution of $T_B - PD$s measured at the three frequencies (Fig.5). At 36.5 GHz there is a “spatial accumulation point” for $T_B \sim 280$ K and $PD \sim 0$, i.e. there is no spatial variability in the simulated signal for observation points located from the rain shaft edge up to an along GP-LOS distance from the rain shaft of about 6 km. At such
far distance the radiometer starts sensing the decrease in rain content at around 4 km altitude and the presence of cloud droplets as well (top left panel of Fig. 15). Similarly in Fig. 5 there is a “temporal accumulation point”, with measurements dwelling at the same location in the 36.5 GHz $T_B - PD$ plane between 20:45 and 20:47 at $T_B \sim 270$ K. Assuming that the storm is moving at 8 m/s, this will produce a movement of 1.5 km in 3 minutes (and of 4 km for the whole duration of the event), which is inconsistent with the former length estimate (four times larger). It is therefore very likely that the storm did not move along the line of sight of the radiometer but on the other hand crossed its FOV. This is in agreement with the two consecutive PPI images of Fig. 4 which suggest movement of the rain cells from the East to the West. In this case, in Fig. 15, instead of dwelling on the continuous black line, the measurements would have progressively jumped on the other symbol lines (circle, then crosses than dots), undergoing a strong T_B gradient. This actually also better explains the presence of near null PDs in the 36.5 GHz channel for T_Bs below 250 K. The accumulation of measurements in such region of the $T_B - PD$ plane is likely to be the result of NUBF effects and to occur when precipitating systems are migrating out of the radiometer FOV.

To verify our assumption, according to our auxiliary observations for the 19th March event, we guessed a sequence of positions of ADMIRARI relative to our simulated rain shaft (magenta line in the bottom panels of Fig. 14). Note that the zig-zag of the line is related to the symmetry of the problem respect to the line where cross GP-LOS is equal to 0.75 km. The radiometer is first under the rain shaft, then the rain cell is moving away from the radiometer and exiting its FOV, which is also somehow consistent with the MRR observation (top
The magenta lines in the three panels of Fig. 15 correspond to this possible solution; these three patterns resemble the ones observed in Fig. 5 with all the limitations of the case.

It is important to note that in the 10.7 GHz channel the along line of sight optical thicknesses of precipitating media are generally small, P_Ds are linearly decreasing with T_Bs, so that, in the $T_B - P_D$ plane points corresponding to NUBF scenes fall in the same region of uniform beam filled (UBF) scenes (top right panel of Fig. 15) and the structure of the $T_B - P_D$ curve does not suffer significant changes. Because of the non-linearities between the radiometer signal and the retrieved quantities (cloud and rain integrated water path) such ambiguities introduce additional uncertainties in the retrieval.

In addition to that, at 21.0 and 36.5 GHz the pronounced concave upwards behavior of the $T_B - P_D$ curves permits the exploration of new regions in the $T_B - P_D$ plane uncovered by UBF scenes (e.g. blue crosses in the bottom right panel of Fig. 15). The inclusion of NUBF effects is therefore mandatory to cover the full range of observations in the P_Ds space and to decrease the residuals in any Bayesian-type retrieval.

6. Conclusions

The CHUVA GPM/GV campaign has been a unique opportunity in understanding 3D effects related to microwave ground-based polarimetric observations of rain systems. During CHUVA many events were observed by ADMIRARI, all of them characterized by an overwhelming 3D structure with small localized rain elements surrounded by clear air. The occurrence of warm rain events and the simultaneous acquisitions of collocated X-band RHI scans greatly facilitated the RT interpretation. By investigating some case
studies we can draw the following conclusions for polarimetric ground-based radiometer observations:

1. Geometric 3D effects are -obviously- always affecting measurements performed at slant angles. They can be easily accounted for by adopting 1D slant-path approximations.

2. In heavy rain, for radiometers with frequencies in the 10-36 GHz region, the scattered component represents a large fraction (increasing with frequency) of the total signal; for instance, at 36 GHz raindrops are both absorbing and scattering microwave radiation with single scattering albedos easily exceeding 0.5. The overall power detected by the radiometer is therefore the results both of emission and of scattering processes within the FOV of the radiometer, and 3D scattering effects are likely to occur.

3. The PD signal is particularly sensitive to scattered radiation with the first order of scattering contributing crucially to the overall signal. The polarization property of the scattered radiation is driven by the Z_{12} phase matrix element of the scattering medium along the radiometer line of sight. For perfectly oriented spheroids like raindrops and for radiometer observations at 30° elevation angle this term can assume both positive and negative values, depending on the relative geometry of the incoming/outgoing radiation, with a strong dependence on the relative azimuth. Radiation fields with strong azimuthal inhomogeneities (like those produced by side leakages) can produce large departures from the polarization signals produced when adopting 1D SP approximations (which inherently assume azimuthal symmetric radiation fields).

4. Observations of PDs as high as +4 K and +2.5 K at 36.5 GHz and 21.0 GHz, respectively, in combination with almost saturated T_Bs are clear 3D scattering fingerprints. As a consequence, the interpretation of PD signals for the 21 and 36.5 GHz channels is
utterly difficult at large optical thicknesses because they are heavily influenced by the 3D structure of the system. This poses serious problems when interpreting the PD results for instance in the implementation of ADMIRARI-like physically based schemes tailored to retrieve integrated cloud and rain water paths.

5. Due to the smaller footprint, ground-based observations are potentially less affected by NUBF than space-borne observations and therefore more suited for pristine studies of the radiation field. However, when the precipitating system is tall (e.g. in tropical environments) and it is located far away from the radiometer position, NUBF can play a relevant role as well. Because of the non linear response of PDs with T_Bs and of both these quantities with the variables to be retrieved (cloud and rain integrated water path) NUBF is difficult to disentangle. Its effect is twofold: either it bears ambiguities (i.e. measurements with the same PDs and T_Bs but corresponding to different microphysical states) or it favors the occurrence of PDs and T_B unpredicted by UBF scenarios.

The current analysis stresses thorny issues related to 3D RT effects present in physically based schemes aimed at retrieving integrated cloud and rain water paths from ADMIRARI-like observations. The introduction of highly resolved (500 m resolution or less) cloud model runs (tailored to the different synoptic conditions experienced during the measurement field campaigns) coupled with full 3D RT models represents the most rigorous modus operandi for the foundation of a RT database suited for a Bayesian retrieval scheme. This is the strategy we are currently pursuing for an optimal interpretation of ADMIRARI observations.

Acknowledgments. The authors would like to thank the NASA GPM/GV program for funding the participation of ADMIRARI in the CHUVA campaign, the Brazilian
GPM/GV counterpart for logistic assistance and cooperation during the experiment and the access to auxiliary data. We are also grateful to Prof. C. Kummerow for useful discussions during the field campaign and afterwards and to the reviewers for their comments.

The ADMIRARI project has been funded by the Deutsche Forschungsgemeinschaft (DFG) under grant BA 3485/1-1. The authors are grateful for the financial support provided by the Brazilian Space Agency - AEB during the CHUVA field campaign at Alcantara, Brazil. One of the authors (C.A. Morales) was also partially supported by FAPESP grant #2009/15235-8 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES. Dr. Battaglia was funded for his travels by the NCEO Mission Support funding.
References

Figure 1. Site scheme for the CHUVA campaign with the location of all the instruments.

The dashed line indicates the direction of observation for ADMIRARI (Site 2) and of the RHI scans of the X-band Radar (Site 1). The distance between sites 1 and 2 is 7.65 km.
Figure 2. ADMIRARI measurements collected during the CHUVA campaign displayed in the $T_B - PD$ plane at 10.7 GHz (left) and 36.5 GHz (right). The colorbar indicates the number of occurrences on a logarithmic scale.
Figure 3. Measurements from March 19th, 2010, at 30° elevation angle. Top panel: MRR reflectivity in dBZ. The dashed line corresponds to the range location of the freezing level as identified by the closest radiosounding. Second panel: brightness temperature for the three frequencies. Third, fourth and bottom panels: polarization difference at 36, 21 and 10 GHz respectively. Gray areas indicate rainy periods flagged by the rain sensor co-located with ADMIRARI.
Figure 4. Radar range height indicator (RHI) (top) and plane position indicator (PPI) (bottom) sequence for the event of March 19th, 2010. The RHI scans are performed every six minutes towards ADMIRARI. ADMIRARI position (FOV) is indicated by a cross (cone) in the PPI (RHI) plots. The radiometer is located 7.65 km away from radar.
Figure 5. Event of March 19th, 2010: time evolution in the $T_B - PD$ plane for the three ADMIRARI frequencies. The overall duration of the event is eight minutes. The colorbar modulates the time passed in minutes from the beginning of the event at 20:42 UTC.
Figure 6. Measurements from 20th March, 2010, at 30° elevation angle. Top panel: MRR reflectivity in dBZ color scale coded, second panel: brightness temperature for the three frequencies; third, fourth and bottom panels: polarization difference at 36, 21 and 10 GHz, respectively. Gray areas indicate rainy periods flagged by the rain sensor.
Figure 7. Radar RHI sequence for the event of 20th March, 2010. The RHI scans are performed every six minutes towards ADMIRARI. The ADMIRARI FOV is indicated by the blue cone in the top left panel.
Figure 8. Event of the 20th March, 2010: time evolution in the $T_B - PD$ plane for the three ADMIRARI frequencies. The overall duration of the event is forty minutes. The colorbar modulates the time passed in minutes from the beginning of the event at 9:50 UTC.
Figure 9. Schematic for the rain cloud simulation. Radiances have been computed at the radiometer location identified by the coordinate (Along $GP-LOS$, cross $GP-LOS$). The blue-shaded area contains the rain system which has a vertical but no horizontal structure. The length of the horizontal sides of the cloud box are L_{al} and L_{cx}. Non shaded areas contain only atmospheric gases. The surface is assumed to be a black body.
Figure 10. Brightness temperatures (left) and polarization differences (right) as sensed by an ADMIRARI-type radiometer looking “southward” (i.e. downward in the figure) at an elevation angle of 30°. The different radiometer viewing positions are identified by two coordinates: the along and cross ground-projected line-of-sight (GP-LOS) distances. Top panels: 10.7 GHz; bottom panels: 36.5 GHz.
Figure 11. Contribution of different order of scattering to the brightness temperatures (left) and to the polarization differences (right) for different radiometer positions of Fig. 10 along the line with a cross ground-projected line-of-sight (GP-LOS) distance equal to 2 km (dot-dashed line in the bottom left panel of Fig. 10). Top panels: 10.7 GHz; bottom panels: 36.5 GHz.
Figure 12. Left panel: phase function element \(Z_{21} \) for \(\theta_r = 150^\circ \) for a Marshall and Palmer distributed rain layer with a rain content of 2.8 g/m\(^3\). Right panel: azimuthally averaged phase function element \(\langle Z_{21} \rangle_{\Delta \Phi} \) from the left panel.
Figure 13. Schematic for understanding 3D effects when the radiometer is underneath the rain shaft (top panel) and outside of it (bottom panel).
Figure 14. Same as in Fig. 10 but for the 21 (top) and 36.5 GHz (bottom) channels and for a scenario more appropriate for the 19th March event: $L_{cx} = 1.5$ km, and $L_{al} = 1.5$ km. The magenta line is a guessed position of the radiometer during the 19th March event.
Figure 15. Top left panel: hydrometeor profile considered to match the case observed on the 19th March, 2010. The spatial evolution in the $T_B - PD$ space is shown when moving from within to the outside of the rain shaft for different cross GP-LOS distances as indicated in the legend. Each line is traveled counterclockwise. The magenta line corresponds to simulated observations in correspondence to magenta path shown in Fig. 14.